Поиск в словарях
Искать во всех

Большая Советская энциклопедия - доза

Доза

I

Доза́ (Dauzat)

Альбер (4.7.1877, Гере, — 1.11.1955, Париж), французский лингвист. В 1896 окончил университет в Париже, в 1899 — Практическую школу высших знаний, где с 1921 был профессором и директором. Преподавал в Алжирском университете (1947—48). Основные труды по лингвистической географии, диалектологии, истории французского языка и ономастике. Основал журнал «Le Français moderne» (1933), «Onomastica» (1947, с 1949 называется «Revue Internationale d'onomastigue»).

Соч.: La langue française, sa vie, son évolution, P., 1926; Les argots, P., 1929; Histoire de la langue française, P., 1930; La toponymie française, P., 1946; Le nouvel atlas linguistique de la France par régions, Luçon, 1948; Dictionnaire étymologique des noms de famille et des prénoms de France, P., 1951.

P. А. Агеева.

II

До́за (от греч. dósis — порция, приём)

лекарственного препарата, приём, определённое количество лекарственного препарата, вводимого в организм. Д. устанавливают в зависимости от возраста больного, индивидуальных особенностей организма, характера и течения заболевания. Для ядовитых и сильнодействующих лекарственных веществ государственной фармакопеей СССР определены высшие Д. — разовые (на один приём) и суточные. Эти Д. без специальных показаний (например, необходимость быстро создать в организме определённую концентрацию лекарства — ударная Д.) превышать нельзя. Д. лекарства, вызывающая отравление, называется токсической, влекущая смерть — смертельной, или летальной. Лекарство обычно дозируют в граммах и долях граммов (санти-, милли-, микрограммах). Жидкие лекарственные вещества дозируют в мл, а также ложками (столовая 15—25 мл, десертная 8—10 мл, чайная 4—5 мл) и в каплях (в среднем 0,05 г). Д. антибиотиков, некоторых гормональных препаратов и витаминов устанавливают также в единицах действия (ЕД), международных (ME) или интернациональных (ИЕ) единицах.

III

До́за

ионизирующего излучения, энергия ионизирующего излучения (См. Ионизирующие излучения), поглощённая в единице массы облучаемого вещества. В этом смысле Д. излучения называется также поглощённой Д. (Dп). Поглощённая энергия расходуется на нагрев вещества, а также на его химические и физические превращения. Величина Д. зависит от вида излучения (рентгеновское излучение, поток нейтронов и т.п.), энергии его частиц, плотности их потока и состава облучаемого вещества. При прочих равных условиях Д. тем больше, чем больше время облучения. Т. о., Д. накапливается со временем. Д., отнесённая к единице времени, называется мощностью Д.

Зависимость величины Д. от энергии частиц, плотности их потока и состава облучаемого вещества различна для разных видов излучения. Например, для рентгеновского и γ-излучений Д. зависит от атомного номера Z элементов, входящих в состав вещества; характер этой зависимости определяется энергией фотонов hv (h — Планка постоянная, vчастота электромагнитных колебаний). Для этих видов излучений Д. в тяжёлых веществах больше, чем в лёгких (при одинаковых условиях облучения; см. Гамма-излучение, Рентгеновские лучи). Нейтроны взаимодействуют с ядрами атомов. Характер этого взаимодействия существенно зависит от энергии нейтронов. Если происходят упругие соударения нейтронов с ядрами, то средняя величина энергии, переданной ядру в одном акте взаимодействия, оказывается большей для лёгких ядер (см. Замедление нейтронов). В этом случае (при одинаковых условиях облучения) поглощённая Д. в лёгком веществе будет выше, чем в тяжёлом. Др. виды ионизирующих излучений имеют свои особенности взаимодействия с веществом, которые определяют зависимость Д. от энергии излучения и состава вещества. Поглощённая Д. в системе единиц СИ измеряется в дж/кг. Широко распространена внесистемная единица рад: 1 рад = 10-2дж/кг = 100 эрг/г. Мощность дозы измеряется в рад/сек, рад/ч и т.п.

Кроме поглощённой Д., существуют понятия экспозиционной и эквивалентной Д. Экспозиционная Д. — мера ионизации воздуха под действием рентгеновского и γ-излучений — измеряется количеством образованных зарядов. Единицей экспозиционной Д. в системе СИ является к/кг. Экспозиционная Д. в 1 к/кг означает, что суммарный заряд всех ионов одного знака, образованных в 1 кг воздуха, равен одному Кулону. Широко распространена внесистемная единица экспозиционной Д. — Рентген: 1 р = 2,57976․10-4 к/кг, что соответствует образованию 2,08 ․109 пар ионов в 1 см3 воздуха (при О°С и 760 мм рт. ст.). На создание такого количества ионов необходимо затратить энергию, равную 0,114 эрг/см3 или 88 эрг/г. Т. о., 88 эрг/г есть энергетический эквивалент рентгена. По величине экспозиционной Д. можно рассчитать поглощённую Д. рентгеновского и γ-излучений в любом веществе. Для этого необходимо знать состав вещества и энергию фотонов излучения.

При облучении живых организмов, в частности человека, возникают биологические эффекты, величина которых определяет степень радиационной опасности. Для данного вида излучения наблюдаемые радиационные эффекты во многих случаях пропорциональны поглощённой энергии. Однако при одной и той же поглощённой Д. в тканях организма биологический эффект оказывается различным для разных видов излучения. Следовательно, знание величины поглощённой Д. оказывается недостаточным для оценки степени радиационной опасности. Принято сравнивать биологические эффекты, вызываемые любыми ионизирующими излучениями, с биологическими эффектами, вызываемыми рентгеновским и γ-излучениями. Коэффициент, показывающий во сколько раз радиационная опасность для данного вида излучения выше, чем радиационная опасность для рентгеновского излучения при одинаковой поглощённой Д. в тканях организма, называется коэффициентом качества К. В радиобиологических исследованиях для сравнения радиационных эффектов пользуются понятием относительной биологической эффективности (См. Относительная биологическая эффективность). Для рентгеновского и γ-излучений К = 1. Для всех др. ионизирующих излучений коэффициент качества устанавливается на основании радиобиологических данных. Коэффициент качества может быть разным для различных энергий одного и того же вида излучения. Например, для тепловых нейтронов (См. Тепловые нейтроны) К = 3, для нейтронов с энергией 0,5 Мэв К = 10, а для нейтронов с энергией 5,0 Мэв К = 7. Эквивалентная доза определяется как произведение поглощённой Dn на коэффициент качества излучения К; = DnК. Коэффициент К является безразмерной величиной, и эквивалентная Д. может измеряться в тех же единицах, что и поглощённая. Однако существует специальная единица эквивалентной Д. — бэр. Эквивалентная Д. в 1 бэр численно равна поглощённой Д. в 1 рад, умноженной на коэффициент качества К.

Т. о., одинаковой величине эквивалентной Д. соответствует одинаковая радиационная опасность, которой подвергается человек при воздействии на него любого вида излучения. Естественные источники ионизирующего излучения (космические лучи, естественная радиоактивность почвы, воды, воздуха, а также радиоактивность, содержащаяся в теле человека) создают в среднем мощность эквивалентной Д. 125 мбэр в год. Эквивалентная Д. в 400—500 бэр, полученная за короткое время при облучении всего организма, может привести к смертельному исходу (без специальных мер лечения). Однако такая же эквивалентная Д., полученная человеком равномерно в течение всей его жизни, не приводит к видимым изменениям его состояния. Эквивалентная Д. в 5 бэр в год считается предельно допустимой дозой (ПДД) при профессиональном облучении.

Минимальная Д. γ-излучения, вызывающая подавление способности к размножению некоторых клеток после однократного облучения, составляет 5 бэр. При длительных ежедневных воздействиях Д. в 0,02—0,05 бэр наблюдаются начальные изменения крови, а Д. в 0,11 бэробразование опухолей. Об отдалённых последствиях облучения судят по увеличению частоты мутаций (См. Мутации) у потомков. Д., удваивающая частоту спонтанных мутаций у человека, вероятно, не превышает 100 бэр на поколение. При местном облучении, например с целью лечения злокачественных опухолей, применяют (при соблюдении защиты всего организма) высокие Д. (6000—10000 бэр за 3—4 недели) рентгеновских или γ-лучей (см. Лучевая терапия).

В радиобиологии (См. Радиобиология) различают следующие Д., приводящие к гибели животных в ранние и поздние сроки. Д., вызывающая гибель 50% животных за 30 дней (летальная доза — ЛД30/50), составляет при однократном одностороннем рентгеновском или γ-облучениях для морской свинки 300 бэр, для кролика 1000 бэр. Минимальная абсолютно летальная доза (МАЛД) для человека при общем γ-облучении равна Доза 600 бэр. С увеличением Д. продолжительность жизни животных сокращается, пока она не достигает 2,8—3,5 сут, дальнейшее увеличение Д. не меняет этого срока. Лишь Д. выше 10000—20000 бэр сокращают продолжительность жизни до 1 сут, а при последующем облучении — до нескольких часов. При Д. в 15000—25000 бэр отмечаются случаи «смерти под лучом». Каждому диапазону Д. соответствует определённая форма лучевого поражения. Ряд беспозвоночных животных, растений и микроорганизмов обладает значительно более низкой чувствительностью (см. также Биологическое действие ионизирующих излучений).

Измерение Д. излучения с целью предсказания радиационного эффекта осуществляют дозиметрами (см. Дозиметрические приборы).

Лит.: ГОСТ 8848—63. Единицы радиоактивности и ионизирующих излучений, М., 1964; ГОСТ 12631-67. Коэффициент качества ионизирующих излучений, М., 1967; Иванов В. И., Курс дозиметрии, 2 изд., М., 1970; Голубев Б. П., Дозиметрия и защита от ионизирующих излучений, 2 изд., М., 1971.

В. И. Иванов, Н. Г. Даренская.

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое доза
Значение слова доза
Что означает доза
Толкование слова доза
Определение термина доза
doza это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины