Словарь логики - логика классическая
Логика классическая
раздел современной (математической, символической) логики, включающий классическую логику высказываний и классическую логику предикатов. Л.к. опирается на двузначности принцип, в соответствии с которым всякое высказывание является или истинным, или ложным. У истоков Л. к. стоят, наряду со многими другими исследователями, Д.
Буль (1815-1864), А. де Морган (1806-1871), Ч. Пирс (1839-1914). В их работах была постепенно реализована идея перенесения в логику тех методов, которые обычно применяются в математике. Последний шаг в математизации логики в прошлом веке был сделан Г. Фреге (1848-1925). Уже в этом веке важный вклад в развитие Л. к. внесли Б. Рассел (1872-1970), А. Уайтхед (1861-1947), Г.
Гильберт (1862-1943) и др. Л. к. ориентировалась главным образом на анализ математических рассуждений. С этим связаны многие ее особенности, нередко расценивающиеся теперь как недостатки. В частности, формальным аналогом условного высказывания в Л.к. является импликация материальная, для которой верны положения: истинное высказывание имплицируется любым высказыванием, ложное высказывание имплицирует каждое высказывание и другие парадоксы импликации. Критика Л. к. началась в начале XX в. и велась в разных направлениях. Результатом ее явилось возникновение новых разделов современной логики, составляющих в совокупности логику неклассическую.Л. к. остается тем не менее ядром современной логики, сохраняющим свою теоретическую и практическую значимость. Явившись тем образцом, от которого отталкивались разнообразные неклассические системы, Л. к., как правило, оказывается в определенном смысле предельным и притом наиболее простым случаем последних. Многие из них могут быть представлены как расширения Л.
к., обогащающие ее выразительные средства. .