Физическая энциклопедия - фотопроводимость
Фотопроводимость
фоторезистивный эффект, увеличение электропроводности полупроводника под действием электромагн. излучения. Впервые Ф. наблюдалась в Se У. Смитом (США) в 1873. Обычно Ф. обусловлена увеличением концентрации подвижных носителей заряда под действием света (концентрационная ф.). Она возникает в результате неск. процессов: фотоны «вырывают» эл-ны из валентной зоны и забрасывают их в зону проводимости, при этом одновременно возрастает число эл-нов проводимости и дырок (собственная Ф.
); эл-ны из заполненной зоны забрасываются на свободные примесные уровни возрастает число дырок (дырочная примесная Ф.); эл-ны забрасываются с примесных уровней в зону проводимости (электронная примесная Ф., рис. 1). Возможно комбинированное возбуждение Ф. Концентрационная Ф. может возникать только при возбуждении достаточно коротковолновым излучением, когда энергия фотонов превышает либо ширину запрещённой зоны, либо расстояние между одной из зон и примесным уровнем. Ф. обладают все неметаллич. твёрдые тела. Наиболее изучена и широко применяется в технике Ф. полупроводников: Ge, Si, Se, CdS, CdSe, InSb, GaAs, PbS и др. Величина концентрационной Ф. пропорц. квантовому выходу Y (отношению числа образующихся носителей к общему числу поглощённых фотонов) и времени жизни неравновесных (избыточных) носителей, возбуждаемых светом (фотоносителей).При освещении видимым светом Y обычно меньше 1 из-за «конкурирующих» процессов, приводящих к поглощению света, но не связанных с образованием носителей (возбуждение экситонов, примесных атомов, фононов и др.). При облучении в-ва УФ или более жёстким излучением Y>1, т.к. энергия фотона достаточно велика, чтобы не только вырвать эл-н из заполненной зоны, но и сообщить ему кинетич.
энергию, достаточную для ударной ионизации. Время жизни носителя (время т, к-рое он в среднем проводит в свободном состоянии) определяется процессами рекомбинации. При прямой (межзонной) рекомбинации эл-н сразу переходит из зоны проводимости в валентную зону. В случае рекомбинации через примесные центры эл-н сначала захватывается примесным центром, а затем уже попадает в валентную зону.В зависимости от структуры материала, его чистоты и темп-ры т может меняться в пределах от 1 до 10-8 с. Рис. 2. Характерный вид спектра собств. фотопроводимости. Резкий спад и длинноволновой области отвечает т. н. краю поглощения -выключению «собственного» поглощения, когда энергия фотона меньше ширины запрещённой зоны; плавный спад в области малых длин волн обусловлен поглощением света у поверхности.
Зависимость Ф. от длины волны излучения К определяется спектром поглощения полупроводника. По мере увеличения ? фототок Ф. сначала достигает максимума, а затем падает (рис. 2). Спад фототока объясняется тем, что при большом коэфф. поглощения весь свет поглощается в поверхностном слое проводника, где очень велика скорость рекомбинации носителей (поверхностная рекомбинация). При поглощении свободными носителями длинноволнового электромагн. излучения, не вызывающего межзонных переходов и ионизации примесных центров, происходит увеличение энергии («разогрев») носителей, что приводит к изменению их подвижности и, следовательно, к увеличению электропроводности. Такая «подвижностная» Ф. убывает при высоких частотах и перестаёт зависеть от частоты при низких частотах. Изменение подвижности под действием излучения может быть обусловлено не только увеличением энергии носителей, но и влиянием излучения на процессы рассеяния электронов кристаллич. решёткой. .