Физическая энциклопедия - световой пробой
Световой пробой
(оптический пробой, оптический разряд, лазерная искра), переход вещества в результате интенсивной ионизации в состояние плазмы под действием эл.-магн. полей оптич. частот. Впервые С. п. наблюдался в 1963 при фокусировке в воздухе излучения мощного импульсного лазера на кристалле рубина, работающего в режиме модулированной добротности.
При С. п. в фокусе линзы возникает искра, эффект воспринимается наблюдателем как яркая вспышка, сопровождаемая сильным звуком. Для пробоя газов на оптич. частотах требуются огромные электрич. поля порядка 106-107 В/см, что соответствует интенсивности светового потока в луче лазера =109-1011 Вт/см2 (для сравнения, СВЧ-пробой атм. воздуха происходит при напряжённости поля =104 В/см).
Возможны два механизма С. п. газа под действием интенсивного светового излучения. Первый из них не отличается по своей природе от пробоя газов в полях не очень больших частот (сюда относится и СВЧ-диапазон). Первые затравочные эл-ны, появившиеся по тем или иным причинам в поле, сначала набирают энергию, поглощая фотоны при столкновениях с атомами газа,этот процесс явл.
обратным по отношению к тормозному испусканию квантов при рассеянии эл-нов нейтр. возбуждёнными атомами. Накопив энергию, достаточную для ионизации, эл-н ионизует атом, и вместо одного появляются два медленных эл-на, процесс повторяется. Так развивается лавина (см. ЛАВИННЫЙ РАЗРЯД). В сильных полях такой процесс осуществляется достаточно быстро и в газе вспыхивает пробой. Второй механизм возникновения С. п., характерный именно для оптич. частот, имеет чисто квантовую природу. Эл-ны могут отрываться от атомов в результате многоквантового фотоэффекта, т. е. при одновременном поглощении сразу неск. фотонов. Одно-квантовый фотоэффект в случае частот видимого диапазона невозможен, т. к. потенциалы ионизации атомов в несколько раз превышают энергию кванта. Так, напр., энергия фотона рубинового лазера равна 1,78 эВ, а ионизационный потенциал аргона равен 15,8 эВ, т. е. для отрыва эл-на требуется 9 фотонов. Обычно многофотонные процессы маловероятны, но скорость их резко повышается при увеличении плотности числа фотонов, а при тех высоких интенсивностях, при к-рых наблюдают С. п., вероятность их достигает значительной величины. В плотных газах, при давлениях порядка атмосферного и выше, всегда происходит лавинная ионизация, многофотонные процессы явл. здесь лишь причиной появления первых эл-нов. В разреженных же газах и в полях пикосекундных импульсов, когда эл-ны вылетают из области действия поля, не успев испытать много столкновений, лавина не развивается и С. п. возможен только за счёт непосредственного вырывания эл-нов из атомов под действием света.Это возможно только при очень сильных световых полях >107 В/см. При высоких давлениях С. п. наблюдается в гораздо более слабых полях. Весь механизм С. п. сложен и многообразен. ОСНОВНЫЕ СВЕТОВЫЕ ВЕЛИЧИНЫ С. п. наблюдается и в конденсированных средах при распространении в них мощного лазерного излучения и может явиться причиной разрушения материалов и оптич.
деталей лазерных устройств. О возможных применениях плазмы, возникающей при С. п., (см. ЛАЗЕРНАЯ ПЛАЗМА). .