Физическая энциклопедия - ядерные цепные реакции
Ядерные цепные реакции
ц. р. (см. ЯДЕРНЫЙ РЕАКТОР). При достаточно больших значениях (К-1) реакция перестаёт быть регулируемой и может привести к ядерному взрыву. Рассмотрим Я. ц. р. на природном уране, содержащем практически 2 изотопа: 238U (99,29%) и 235U (0,71%). Ядро 238U делится только под действием быстрых нейтронов с энергией ?>1 МэВ и малым эффективным сечением sд=0,3 барна.
Напротив, ядро 235U делится под действием нейтронов любых энергий, причём с уменьшением ? sд резко возрастает. При делении 238U или 235U быстрым нейтроном вылетает n=2,5 нейтрона с энергией от 0,1 МэВ до 14 МэВ. Это означает, что при отсутствии потерь энергия Я. ц. р. могла бы развиться в природном уране.Однако потери есть: ядра 238U могут захватывать нейтроны (см. РАДИАЦИОННЫЙ ЗАХВАТ) с образованием 239U. Кроме того, при столкновении нейтронов с ядром происходит неупругое рассеяние, при к-ром энергия нейтронов становится ниже 1 МэВ, и они уже не могут вызвать деление 238U. Большая часть таких нейтронов испытывает радиац. захват или вылетает наружу.
В результате Я. ц. р. не может развиться. Для возбуждения Я. ц. р. в естеств. уране используется замедление нейтронов при их столкновении с лёгкими ядрами (2Н, 12С и др.). Оказалось, что сечение деления 235U на тепловых нейтронах s(5)д =582 барна, сечение радиац. захвата в 235U (с образованием 236U) sр(5) = 100 барн, а в 238U sр(8) = 2,73 барна. При делении тепловыми нейтронами n=2,44. Отсюда следует, что число нейтронов т), к-рые могут вызвать деление, приходящееся на 1 поглощённый тепловой нейтрон предыдущего поколения, равно: . Здесь r8/r5 отношение концентраций 238U и 235U, что означает возможность развития Я. ц. р. в смеси природного урана с замедлителем.Однако при делении на тепловых нейтронах рождаются быстрые нейтроны, к-рые, прежде чем замедлиться до тепловой энергии, могут поглотиться. Сечение радиац. захвата 238U имеет резонансный характер, т. е. достигает очень больших значений в определённых узких интервалах энергии. В однородной (гомогенной) смеси вероятность резонансного поглощения слишком велика, чтобы Я.
ц. р. на тепловых нейтронах могла осуществиться. Эту трудность обходят, располагая уран в замедлителе дискретно, в виде блоков, образующих правильную решётку. Резонансное поглощение нейтронов в такой гетерогенной системе резко уменьшается по двум причинам: 1) сечение резонансного поглощения столь велико, что нейтроны, попадая в блок, поглощаются в поверхностном слое, поэтому часть атомов урана не участвует в резонансном поглощении; 2) нейтроны резонансной энергии, образовавшиеся в замедлителе, могут не попасть в уран, а, замедляясь при рассеянии на ядрах замедлителя, «уйти» из опасного интервала энергии.
При поглощении теплового нейтрона в блоке рождается т) вторичных быстрых нейтронов, каждый из к-рых до выхода из блока вызовет небольшое кол-во делений ядер 238U. В результате число быстрых нейтронов, вылетающих из блока в замедлитель, равно eh, где e коэфф. размножения на быстрых нейтронах; если j вероятность избежать резонансного поглощения, то только ?hj нейтронов замедлятся до тепловой энергии.
Часть тепловых нейтронов поглотится в замедлителе. Пусть 9 -вероятность того, что тепловой нейтрон поглотится в уране (коэфф. теплового использования нейтронов). В гомогенной системе: . Здесь rU, rзконцентрации урана и замедлителя, sUп ,sзпсоответствующие сечения поглощения, Ф потоки нейтронов. В результате на 1 тепловой нейтрон первого поколения, совершающий деление, приходится К?=ehjq нейтронов след.
поколения, к-рые могут вызвать деление. К? коэфф. размножения нейтронов в бесконечной гетерогенной системе. Если K?>1, то реакция деления в бесконечной решётке будет нарастать экспоненциально. В системе, имеющей огранич. размеры, часть нейтронов может покинуть среду. Обозначим долю нейтронов, вылетающих наружу, через(1-Р), тогда для продолжения реакции деления остаётся Кэф=К?P нейтронов, и если Kэф>1, то число делений растёт экспоненциально и реакция явл.
саморазвивающейся. Т. к. число делений и, следовательно, число вторичных нейтронов в размножающей среде пропорц. её объёму, а их вылет пропорц. поверхности окружающей среды, то Я. ц. р. возможна только в среде достаточно больших размеров. Напр., для шара радиуса R отношение объёма к поверхности равно R/3, и, следовательно, чем больше R, тем меньше утечка нейтронов.
Если радиус размножающей среды становится достаточно большим, чтобы в системе протекала стационарная Я. ц. р., т. е. Kэф-1=0, то такую систему наз. критической, а её радиус критическим. Для осуществления Я. ц. р. в природном уране на тепловых нейтронах используют в качестве замедлителя в-ва с малым сечением радиац. захвата (графит или тяжёлую воду D2O).
В замедлителе из обыкновенной воды Я. ц. р. на природном уране невозможна из-за большого поглощения нейтронов водородом. Чтобы интенсивность Я. ц. р. можно было регулировать, время жизни одного поколения нейтронов должно быть достаточно велико. Время жизни t0 тепловых нейтронов мало (t0=10-3с). Однако наряду с нейтронами, вылетающими из ядра мгновенно (за время 10-16 с), существует небольшая доля m т.
н. запаздывающих нейтронов, вылетающих после b-распада осколков деления со ср. временем жизни =14,4 с. Для запаздывающих нейтронов при делении 235U m»0,7•10-2. Если Kэф>1+m, то время Т «разгона» Я. ц. р. (время, за к-рое число делений увеличивается в е раз) определяется соотношением: . т. е. запаздывающие нейтроны не участвуют в развитии Я. ц. р.
Практически важен др. предельный случай: Kэф-1 .