Физическая энциклопедия - ядерная фотографическая эмульсия
Ядерная фотографическая эмульсия
В 1937-38 австр. физики М. Блау и Г. Бомбахер и А. П. Жданов с сотрудниками наблюдали в Я. ф. э. расщепления ядер, вызванные косм. излучением. В 1945-48 появились релятив. Я. ф. э. для регистрации релятив. ч-ц. Метод Я. ф. э. стал точным количеств. методом исследований. Я. ф. э. отличаются от обычных фотоэмульсий двумя особенностями: отношение кол-ва галогенида Ag к желатине в 8 раз больше; толщина слоя, как правило, в 10-100 раз больше и достигает иногда 1000-2000 мкм (стандартная толщина фирменных Я.
ф. э. 100-600 мкм). Зёрна галогенида Ag в эмульсии имеют ср. линейный размер обычно 0,080,30 мкм. Заряж. ч-цы, проходя через Я. ф. э., создают чувствит. центры в нек-рых лежащих на их пути зёрнах галогенида Ag (скрытое изображение). После проявления эти зёрна превращаются в кристаллики металлич. Ag, к-рые непрозрачны и после фиксирования Я. ф. э.
образуют вдоль трека ч-цы цепочку чёрных зёрен. Следы ч-ц наблюдают с помощью микроскопов при увеличении 200-2000. В яд. физике Я. ф. э. обычно используют в виде слоев, наклеенных на стеклянные подложки. При исследовании ч-ц высоких энергий (на ускорителях или в космических лучах) эмульсионные слои иногда снимают с подложки и укладывают в большие стопки в неск.
сотен слоев. Объём стопок доходит до десятков p-образуется практически сплошная фоточувствит. масса. После экспозиции отд. слои наклеивают на стеклянные подложки и обрабатывают. Положение слоев маркируют, благодаря чему траекторию частиц прослеживают по всей стопке, переходя от слоя к слою. Пробег ч-цы с зарядом Q и скоростью v в Я. ф. э. до остановки ч-цы пропорц. массе М ч-цы. При достаточно большой скорости плотность зёрен (число проявленных зёрен на ед. длины следа) g=Q2/v2. Если плотность зёрен слишком велика, они сливаются в сплошной чёрный след. В этом случае (особенно при большом Q) мерой скорости ч-цы может служить число вторичных т. н. d-электронов, образующих вдоль следа характерные ответвления. Их плотность также =Q2/v2. Если Q=e (заряду эл-на), а v=c, то след частицы в релятив. Я. ф. э. имеет вид прерывистой линии из 15-30 чёрных зёрен на 100 мкм пути. В Я. ф. э. можно измерять рассеяние ч-ц. Ср. угловое отклонение на ед. пути j=Q/pv (p импульс ч-цы).Я. ф. э. можно поместить в очень сильное магн. поле и измерить импульс ч-цы и знак её заряда, что позволяет определить Q, М и v. Достоинства метода Я. ф. э. как трекового детектора ч-ц высокое пространств. разрешение (можно различать явления, отделённые расстоянием в =1 мкм, что для релятив. ч-цы соответствует временам пролёта =10-16 с) и возможность длит.
накопления редких событий. Методом Я. ф. э. были открыты пи-мезоны, обнаружено вз-ствие pи К-мезонов после остановки. С помощью Я. ф. э. удалось оценить время жизни pВ°-мезона, обнаружить распад К -мезона на 3 пиона, открыть S-гиперон, гиперядра, антилямбдагиперон. Методом Я. ф. э. был исследован состав первичного косм. излучения и показано, что, кроме протонов, в нём есть ядра Не и более тяжёлых элементов, вплоть до Fe. В 50-е гг. были организованы междунар. экспедиции с целью подъёма многолитровых эмульсионных стопок на баллонах в высокие слои атмосферы и на разл. геомагнитные широты. Части стопок были распределены между десятками лабораторий мира, работавших по согласованным программам. Это позволило в короткие сроки накопить большую статистику и привело к нек-рым из перечисленных выше открытий. Хотя при исследовании ч-ц высоких энергий пузырьковые камеры потеснили Я. ф. э., последние всё же продолжают использоваться. Я. ф. э. применяются также в авторадиографии: в структуру исследуемого объекта вводится небольшое кол-во радиоактивных атомов, к-рые обнаруживают своё присутствие распадами, и Я.ф. э., помещённая вблизи объекта, может указать их локализацию. Для увеличения разрешения и чувствительности метода Я. ф. э. в жидком виде иногда наносят непосредственно на объект или применяют тонкие слои Я. ф. э., снятые с подложки. При этом можно измерять как полное почернение Я. ф. э., так и регистрировать индивидуальные следы, достигая пространств.
разрешения =1 мкм. .