Поиск в словарях
Искать во всех

Энциклопедия эпистемологии и философии науки - абстракция актуальной бесконечности

 

Абстракция актуальной бесконечности

АБСТРАКЦИЯ АКТУАЛЬНОЙ БЕСКОНЕЧНОСТИ — основанный на акте творческого воображения способ образования абстрактных понятий, лежащий в основе формирования одной из наиболее сложных разновидностей идеи бесконечности — идеи актуальной бесконечности. В простейшем случае — при рассмотрении какого-либо необрывающегося конструктивного процесса, порождающего объекты определенного типа — абстракция актуальной бесконечности состоит в отвлечении от принципиальной незавершаемости этого процесса. Представив его как бы «продолженным до конца» и тем самым завершившимся, вводят в рассмотрение его воображаемый результат — множество (совокупность) всех порождаемых им объектов. При этом возникшее таким образом множество в дальнейшем начинает трактоваться в качестве актуального, «готового» объекта рассмотрения. Так, отправляясь от процесса последовательного порождения «натуральных чисел» 0,1,2,..., в результате применения к нему абстракции актуальной бесконечности приходят к актуально бесконечному объекту — «натуральному ряду», который в дальнейшем выступает в качестве на-ичного объекта, равноправного с составляющими его натуральными числами.

В более сложных случаях аналогичной процедуре подвергаются «процессы» существенно более сложных типов. В результате объектами рассмотрения становятся актуально бесконечные множества элементов произвольной природы, что приводит к необходимости изучения понятия «множества» как отдельного абстрактного понятия.

В отличие от таких абстракций, в основе которых лежат только акты «чистого» мысленного отвлечения, абстракция актуальной бесконечности существенным образом использует акты творческого воображения, решительного отхода от действительности, и это влечет за собой возникновение определенных методологических трудностей — в частности, трудностей истолкования суждений об объектах, возникающих в результате такого абстрагирования. Эти трудности, связанные с косвенным характером «осязаемости» объектов, полученных с применением абстракции актуальной бесконечности, оказываются особенно ощутимыми в тех случаях, когда эта абстракция применяется неоднократно и в сочетании с другими идеализациями. В логическом аспекте принятие этой абстракции ведет к принятию классической аристотелевской логики, и в частнсти — к принятию «закона исключенного третьего».

Особо важную роль абстракция актуальной бесконечности сыграла в процессе реализации так называемой «теоретико-множественной» программы построения ма тематики, провозглашенной в последней четверти 19 в. Г. Кантором (совместно с Р. Дедекиндом). По этой программе математику предполагалось возвести в виде своего рода «надстройки» над предварительно подготовленным «фундаментом», роль которого Кантором была отведена его «учению о множествах» (Mengenlehre), более известному в широких кругах под не совсем правильным названием «теории множеств», после чего и сам этот фундамент с его «произвольными множествами элементов произвольной природы» объявлялся частью математики.

(Здесь хотелось бы специально подчеркнуть, что непонятно, каким образом в научной литературе, после создания Кантором его «учения (sic!) о множествах» смог возникнуть и утвердиться несомненно претендующий на научность термин «теория (sic!) множеств»: ведь «теория множеств» всюду, где ее изучают, преподается как математическая дисциплина, между тем как ее основное понятие в самом начале курса неизменно провозглашается неопределяемым. Между тем как вопрос о парадоксах — скажем, о парадоксе Рассела, обнаруженном еще в 1902 и не устраненном до сих пор— никак не комментируется, даже если и излагается.)

Согласно канторовской программе, в свое время получившей в математике самое широкое распространение, всякий математический объект надлежало определять как множество, удовлетворяющее таким-то и таким-то условиям, и это обстоятельство делало абстракцию актуальной бесконечности основным в объектообразующим фактором в рамках данного подхода. Однако в связи с упоминавшимися выше трудностями неограниченное ее использование в качестве правомерного средства образования математических объектов неоднократно наталкивалось на неодобрительную реакцию со стороны ряда выдающихся математиков своего времени (К. Ф. Гаусс — еще до Кантора, — Л. Кронекер, А. Пуанкаре, Г. Вейль, и др.). Фундаментальнейшие программы построения математики, альтернативные по отношению к канторовской, где основной упор делался на использование в качестве базы одной лишь абстракции актуальной бесконечности, были предложены Л.Э.Я. Брауэром в его интуиционизме и А.А. Марковым в его конструктивной математике.

Н.М. Нагорный

Лит.: Колмогоров А.Н. Бесконечность в математике. БСЭ. Т. 3. М., 1970; Гейтинг А. Интуиционизм. Введение. М., 1965; Марков А.А. О конструктивной математике. Труды математического института им. В. А. Стеклова. Т. 67. М. — Л., 1962; Кантор Г. О различных точках зрения на актуальную бесконечность. Он же. Труды по теории множеств. М., 1985.

Энциклопедия эпистемологии и философии науки. М.: «Канон+», РООИ «Реабилитация»

И.Т. Касавин

2009

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое абстракция актуальной бесконечности
Значение слова абстракция актуальной бесконечности
Что означает абстракция актуальной бесконечности
Толкование слова абстракция актуальной бесконечности
Определение термина абстракция актуальной бесконечности
abstrakciya aktualnoy beskonechnosti это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):