Поиск в словарях
Искать во всех

Энциклопедия Кольера - функций теория

Функций теория

раздел математики, занимающийся изучением свойств различных функций. Теория функций распадается на две области: теорию функций действительного переменного и теорию функций комплексного переменного, различие между которыми настолько велико, что обычно их рассматривают порознь. Не вдаваясь в детали, можно сказать, что по существу речь идет о различии, с одной стороны, в детальном изучении основных понятий математического анализа (таких, как непрерывность, дифференцирование, интегрирование и т.п.), а с другой стороны, в теоретическом развитии анализа конкретных функций, представимых степенными рядами. Одним из достижений теории функций действительного переменного стало создание хорошей теории интегрирования, которую мы рассмотрим ниже.

См. также

Анализ В Математике;

Математический Анализ;

Дифференциальные Уравнения;

Функция;

Число;

Ряды;

Множеств Теория;

Топология.

ФУНКЦИИ ДЕЙСТВИТЕЛЬНОГО ПЕРЕМЕННОГО

Функции, используемые в элементарном анализе, задаются формулами. Их графики обычно можно начертить, не отрывая карандаш от бумаги, как, например, график функции y = sinx, или они состоят из отдельных кусков, обладающих этим свойством, как, например, график функции y = tgx (рис. 1). Первоначально, когда строгое определение непрерывности отсутствовало, все функции, графики которых состоят из одного куска, считались обязательно непрерывными. Например, считалось, что непрерывной можно считать функцию, график которой не может лежать по обе стороны от прямой, не пересекая ее. Иначе говоря, непрерывная функция, принимая какие-либо два значения, непременно принимает и все промежуточные значения. Однако нетрудно найти функции, которые, хотя и заданы формулами и обладают указанным свойством, ведут себя не как непрерывные. Например, функция f(x) = sin(1/x) при x № 0 и f(0) = 0 (рис. 2) обладает свойством, о котором идет речь, однако, по мнению многих, не является непрерывной. Можно построить еще более удивительные примеры функций, принимающих действительное значение на любом сколь угодно малом интервале, но тем не менее не являющихся непрерывными. Графики таких функций не только невозможно начертить, но иногда даже и четко представить себе. С другой стороны, работы Ж. Фурье (1768-1830) и П. Дирихле (1805-1859), связанные с рядами Фурье показали, что некоторые заведомо разрывные функции задаются формулами, по крайней мере, если в число последних включить бесконечные ряды.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое функций теория
Значение слова функций теория
Что означает функций теория
Толкование слова функций теория
Определение термина функций теория
funkciy teoriya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины