Энциклопедия Кольера - звук и акустика
Звук и акустика
ЗВУКОВЫЕ ВОЛНЫ
Рассмотрим длинную трубу, наполненную воздухом. С левого конца в нее вставлен плотно прилегающий к стенкам поршень (рис. 1). Если поршень резко двинуть вправо и остановить, то воздух, находящийся в непосредственной близости от него, на мгновение сожмется (рис. 1,а). Затем сжатый воздух расширится, толкнув воздух, прилегающий к нему справа, и область сжатия, первоначально возникшая вблизи поршня, будет перемещаться по трубе с постоянной скоростью (рис. 1,б). Эта волна сжатия и есть звуковая волна в газе.
Рис. 1. ЗВУКОВАЯ ВОЛНА. а поршень, резко сдвинувшийся в трубе в направлении стрелки, смещает соседние частицы воздуха, создает волну сжатия, т. е. звуковую волну, которая начинает распространяться в сторону от поршня; б звуковая волна движется в воздухе с постоянной скоростью, вызывая временное повышение давления.Звуковая волна в газе характеризуется избыточным давлением, избыточной плотностью, смещением частиц и их скоростью. Для звуковых волн эти отклонения от равновесных значений всегда малы. Так, избыточное давление, связанное с волной, намного меньше статического давления газа. В противном случае мы имеем дело с другим явлением ударной волной. В звуковой волне, соответствующей обычной речи, избыточное давление составляет лишь около одной миллионной атмосферного давления. Важно то обстоятельство, что вещество не уносится звуковой волной. Волна представляет собой лишь проходящее по воздуху временное возмущение, по прохождении которого воздух возвращается в равновесное состояние. Волновое движение, конечно, не является характерным только для звука: в форме волн распространяются свет и радиосигналы, и каждому знакомы волны на поверхности воды. Все типы волн математически описываются так называемым волновым уравнением.
Гармонические волны. Волна в трубе на рис. 1 называется звуковым импульсом. Очень важный тип волны возбуждается, когда поршень колеблется туда-сюда подобно грузу, подвешенному на пружине. Такие колебания называются простыми гармоническими или синусоидальными, а возбуждаемая в этом случае волна гармонической. При простых гармонических колебаниях движение периодически повторяется. Промежуток времени между двумя одинаковыми состояниями движения называется периодом колебаний, а число полных периодов в секунду, частотой колебаний. Обозначим период через Т, а частоту через f; тогда можно написать, что f = 1/T. Если, например, частота равна 50 периодам в секунду (50 Гц), то период равен 1/50 секунды. Математически простые гармонические колебания описываются простой функцией. Смещение поршня при простых гармонических колебаниях для любого момента времени t можно записать в виде