Энциклопедия Брокгауза и Ефрона - параллельные линии
Параллельные линии
прямые линии называются П., если ни они, ни их продолжения взаимно не пересекаются. Все точки одной из таких прямых находятся на одинаковом расстоянии от другой. Однако принято говорить: "две П. прямые пересекаются в бесконечности". Такой способ выражения остается логически верным, потому что он равносилен выражению: "две. П. прямые пересекаются в конце чего-то не имеющего конца", а это равносильно тому, что они не пересекаются. Между тем выражение: "пересекаются в бесконечности" вносит большое удобство: благодаря ему можно утверждать, например, что всякие две прямые на плоскости пересекаются и имеют только одну точку пересечения. Совершенно также поступают в анализе, говоря, что частное от деления единицы на бесконечность равно нулю. На самом деле не существует бесконечно большого числа; в анализе же бесконечностью называется величина, которая может быть сделана более всякой данной величины. Положение: "частное от деления единицы на бесконечность равно нулю" нужно понимать в том смысле, что частное от деления единицы на какое-нибудь число будет тем ближе к нулю, чем больше делитель. К теории П. линий относится и знаменитая XI-я аксиома Эвклида, значение которой выяснено трудами Лобачевского (см. Лобачевский). Если к какой-либо кривой будем проводить нормали (см.) и на них откладывать от кривой одинаковые отрезки, то геометрическое место концов этих отрезков называется линией, параллельной к данной кривой.
Н. Делоне.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон
1890—1907