Поиск в словарях
Искать во всех

Большая Советская энциклопедия - бэра классификация

Бэра классификация

(математика)

классификация разрывных функций (См. Разрывные функции). К 1-му классу относится всякая разрывная функция, которая может быть представлена как предел сходящейся в каждой точке последовательности непрерывных функций (функций нулевого класса); этот класс подробно изучен в 1899 французским математиком Р. Бэром (R. Baire), к нему относятся, например, все функции с конечным числом точек разрыва. Каждая разрывная функция, не входящая в первый класс, но могущая быть представленной как предел сходящейся последовательности функций первого класса, относится ко второму классу. Такова, например, функция Дирихле:

(равна 0 при любом иррациональном х и 1 при любом рациональном х). Аналогично определяются функции третьего, четвёртого и дальнейших классов, причём нумерация классов не ограничивается натуральными (конечными) числами, а может быть продолжена при помощи трансфинитных чисел (См. Трансфинитные числа). А. Лебег (1905) доказал существование функции любого класса и существование функции, не входящей в Б. к. Теория функций, входящих в Б. к. (В-функций), тесно связана с теорией множеств, измеримых В (В-множеств). В-множества введены Э. Борелем (См. Борель). Подробному их изучению посвящены работы Н. Н. Лузина и его учеников.

Лит.: Бэр P., Теория разрывных функций, пер. с франц., М. — Л., 1932.

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое бэра классификация
Значение слова бэра классификация
Что означает бэра классификация
Толкование слова бэра классификация
Определение термина бэра классификация
bera klassifikaciya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины