Большая Советская энциклопедия - колориметр
Связанные словари
Колориметр
I
Колори́метр (от латинского color — цвет и ...метр)
химический, оптический прибор для измерения концентрации веществ в растворах. Действие К. основано на свойстве окрашенных растворов поглощать проходящий через них свет тем сильнее, чем выше в них концентрация с окрашивающего вещества (см. Колориметрия в аналитической химии). Все измерения с помощью К. производятся в монохроматическом свете того участка спектра, который наиболее сильно поглощается данным веществом в растворе (и слабо — другими компонентами раствора). Поэтому К. снабжаются набором Светофильтров; применение различных светофильтров с узкими спектральными диапазонами пропускаемого света позволяет определять по отдельности концентрации разных компонентов одного и того же раствора.
К. разделяются на визуальные и объективные (фотоэлектрические). В визуальных К. свет, проходящий через измеряемый раствор, освещает одну часть поля зрения, в то время как на другую часть падает свет, прошедший через раствор того же вещества, концентрация которого известна. Изменяя толщину l слоя одного из сравниваемых растворов или интенсивность I светового потока, наблюдатель добивается, чтобы цветовые тона двух частей поля зрения были неотличимы на глаз, после чего по известным соотношениям между l, I и с (см. Бугера Ламберта Бера закон) может быть определена концентрация исследуемого раствора.
Фотоэлектрические К. обеспечивают большую точность измерений, чем визуальные; в качестве приёмников излучения в них используются Фотоэлементы (селеновые и вакуумные), фотоэлектронные умножители (См. Фотоэлектронный умножитель), фотосопротивления и Фотодиоды. Сила фототока приемников определяется интенсивностью падающего на них света и, следовательно, степенью его поглощения в растворе (тем большей, чем выше концентрация). Помимо фотоэлектрического К. с непосредственным отсчетом силы тока, распространены компенсационные К. (), в которых разность сигналов, соответствующих стандартному и измеряемому растворам, сводится к нулю (компенсируется) электрическим или оптическим компенсатором (например, клином фотометрическим (См. Клин фотометрический)); отсчет в этом случае снимается со шкалы компенсатора. Компенсация позволяет свести к минимуму влияние условий измерений (температуры, нестабильности свойств элементов К.) на их точность. Показания К. не дают сразу значений концентрации исследуемого вещества в растворе — для перехода к ним используют градуировочные графики, полученные при измерении растворов с известными концентрациями.
Измерения с помощью К. отличаются простотой и быстротой проведения. Точность их во многих случаях не уступает точности других, более сложных методов химического анализа. Нижние границы определяемых концентраций в зависимости от рода вещества составляют от 10-3 до 10-8 моль/л.
Лит.: Булатов М. И., Калининкин И. П., Практическое руководство по фотоколориметрическим и спектрофотометрическим методам анализа, 2 изд., Л., 1968: Физико-химические методы анализа, М., 1968; Пономарева Л. К., Методические разработки по колориметрическим методам анализа, Минск, 1970.
Рис. 1. Оптическая схема визуального химического колориметра типа КОЛ-1М. Уравнивание по цвету двух полей, соответствующих измеряемому и стандартному растворам и наблюдаемых в окуляр 6, осуществляется изменением толщины 1 слоя измеряемого раствора при перемещении плунжера (стеклянного столбика) 3, с которым связана шкала прибора. 1 — источник света, 2 и 2' — кюветы с измеряемым и стандартным растворами; 3, 3' — плунжеры; 4 — призма; 5 — сменные цветные светофильтры.
Рис. 2. Принципиальная схема фотоэлектрического компенсационного колориметра типа ФЭК-М. Свет от источника 1 проходит в левом плече прибора (цифры без штрихов) через измеряемый раствор, в правом плече (цифры со штрихами) — через стандартный; разность сигналов селеновых фотоэлементов 9 и 9' регистрируется гальванометром 14. Неградуированные фотометрические клинья 10, 11 служат для установки гальванометра на нуль в отсутствие растворов. Оптическая компенсация, т. е. сведение разности сигналов приёмников 9 и 9' к нулю после установки кювет с растворами 6 и 6', осуществляется щелевой диафрагмой 12 с отсчётным барабаном (шкалой) 13, 2, 2' — конденсоры; 3, 3' — зеркала; 4, 4' — светофильтры; 5, 5' и 7, 7' — линзы; 8, 8' — призмы.
II
Колори́метр
трёхцветный, прибор для измерения цвета в одной из трёхмерных колориметрических систем, то есть в системе, в которой предполагается, что любой цвет может быть представлен как результат оптического сложения определённых количеств трёх цветов, принимаемых в ней за основные (см. Цветовые измерения).
В визуальных колориметрах эти количества — так называемые координаты цвета — подбираются наблюдателем так, чтобы получить цвет, неотличимый на глаз от измеряемого цвета Ц. Результаты подбора фиксируются на измерительных шкалах К. В простейшем визуальном К. — диске Максвелла — оптическое смешение основных цветов происходит во времени, при быстром попеременном восприятии их наблюдателем одного за другим. Внешнее кольцо этого диска разделено на 3 сектора. Регулировкой величины каждого сектора, окрашенного в один из основных цветов, добиваются того, чтобы при быстром вращении диска воспринимаемый цвет кольца не отличался от цвета образца, помещаемого в центр диска. Более распространены визуальные К., в которых оптическое смешение осуществляется в пространстве — одновременным освещением белой поверхности тремя световыми потоками различной цветности; вклад в получаемый цвет каждого потока регулируется изменением его интенсивности. Оптическая схема одного из лучших К. этого типа (системы Л. И. Дёмкиной) приведена на.
Результаты измерений могут быть представлены в виде Ц = к'К + з'З + + с'С, где к', з', c' — считываемые по шкалам координаты Ц в системе основных цветов прибора К, З и С (обычно красного, зелёного и синего). Зная к', з' и c', можно рассчитать координаты и в любой другой трёхмерной колориметрической системе (с др. основными цветами); для этого достаточно знать координаты цветов К, З и С в этой другой системе. Чаще всего К. градуируют для пересчёта результатов измерений в международную систему XYZ.
Фотоэлектрические колориметры (называют также объективными) составляют другой класс. В проводимых с их помощью измерениях используются соотношения, позволяющие рассчитать координаты цвета измеряемого излучения по его спектральному составу I (λ) (интенсивности излучения как функции длины волны). Эти соотношения представляют собой интегралы от произведений I (λ) на так называемые удельные координаты цвета — известные функции длины волны [в международной системе XYZ это функции x̅(λ), y̅(λ), z̅(λ)]. Фотоэлектрические К. подразделяются на спектроколориметры и приборы с селективными приёмниками. В первых измеряемое излучение разлагается дисперсионной призмой (См. Дисперсионные призмы) (или системой призм) в спектр, «считываемый» фотоэлектрическим приёмником. Сигналы приёмника непрерывно или через равные малые интервалы длин волн умножаются на функции x̅(λ), y̅(λ) и z̅(λ) и интегрируются по всему видимому спектру; результаты интегрирования представляют собой координаты измеряемого излучения. В К. с селективными приёмниками используются три приёмника излучения со светофильтрами или один приёмник, перед которым последовательно вводятся три светофильтра.
Каждый светофильтр состоит из комбинации цветных стекол; их толщины рассчитываются так, чтобы с максимальной точностью привести спектральные чувствительности фотоэлементов к кривым x̅(λ),