Большая Советская энциклопедия - линейная зависимость
Связанные словари
Линейная зависимость
(матем.)
соотношение вида
C11u1 + C2u2 + ... + Cnun = 0, (*)
где С1, C2, ..., Cn — числа, из которых хотя бы одно отлично от нуля, а u1, u2, ..., un — те или иные матем. объекты, для которых определены операции сложения и умножения на число. В соотношение (*) объекты u1, u2, ..., un входят в 1-й степени, т. е. линейно; поэтому описываемая этим соотношением зависимость между ними называется линейной. Знак равенства в формуле (*) может иметь различный смысл и в каждом конкретном случае должен быть разъяснён. Понятие Л. з. употребляется во многих разделах математики. Так, можно говорить о Л. з. между векторами, между функциями от одного или нескольких переменных, между элементами линейного пространства и т. д. Если между объектами u1, u2, ..., un имеется Л. з., то говорят, что эти объекты линейно зависимы; в противном случае их называется линейно независимыми. Если объекты u1, u2, ..., un линейно зависимы, то хотя бы один из них является линейной комбинацией остальных, т. е.
u1 = α 1u1 + ... + α i-1ui-1 + α i+1ui+1 + ... + α nun.
Непрерывные функции от одного переменного
u1 = φ 1(х), u2 = φ 2(х), ..., un = φ n(x) называются линейно зависимыми, если между ними имеется соотношение вида (*), в котором знак равенства понимается как тождество относительно х. Для того чтобы функции φ 1(x), φ 2(x), ..., φ n(x), заданные на некотором отрезке а ≤ х ≤ b, были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль их определитель Грама
где
i, k = 1,2, ..., n.
Если же функции φ1 (x), φ2(x), ..., φn(x) являются решениями линейного дифференциального уравнения (См. Линейные дифференциальные уравнения), то для существования Л. з. между ними необходимо и достаточно, чтобы Вронскиан обращался в нуль хотя бы в одной точке.
Линейные формы (См. Линейная форма) от m переменных
u1 = ai1x1 + ai2x2 + ... + aimxm
(i = 1, 2, ..., n)
называются линейно зависимыми, если существует соотношение вида (*), в котором знак равенства понимается как тождество относительно всех переменных x1, x2, ..., xm. Для того чтобы n линейных форм от n переменных были линейно зависимы, необходимо и достаточно, чтобы обращался в нуль определитель
D=