Поиск в словарях
Искать во всех

Большая Советская энциклопедия - метрическое пространство

Метрическое пространство

множество объектов (точек), на котором введена метрика (См. Метрика пространства-времени). Всякое М. п. является топологическим пространством (См. Топологическое пространство); за окрестности в нём принимаются всевозможные открытые шары [при этом открытым шаром радиуса R с центром в точке x0 называется совокупность всех точек х, для которых расстояние ρ(х, x0) < R]. Топология одного и того же множества может быть различной в зависимости от метрики, введённой на нём. Например, на множестве вещественных функций, определённых и непрерывных на отрезке [a, b] числовой оси, можно ввести две метрики:

Соответствующие М. п. обладают разными топологическими свойствами. М. п. с метрикой (1) является полным [для любой последовательности его точек {xn} такой, что ρ1(xn, xm) → 0 При n, m → ∞, найдётся элемент x0 М. п., являющийся пределом этой последовательности]; М. п. с метрикой (2) этим свойством не обладает. В М. п. можно вводить фундаментальные понятия анализа: непрерывность отображения одного М. п. в другое, сходимость, компактность и т.д. Понятие «М. п.» было введено М. Фреше в 1906. Лит.: Александров П. С., Введение в общую теорию множеств и функций, М. — Л. 1948; Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 3 изд., М., 1972; Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965.

В. И. Соболев.

Большая советская энциклопедия. — М.: Советская энциклопедия

1969—1978

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое метрическое пространство
Значение слова метрическое пространство
Что означает метрическое пространство
Толкование слова метрическое пространство
Определение термина метрическое пространство
metricheskoe prostranstvo это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины