Большая Советская энциклопедия - микроканонический ансамбль
Связанные словари
Микроканонический ансамбль
Статистический ансамбль для изолированных (не обменивающихся энергией с окружающими телами) макроскопических систем в постоянном объёме при постоянном числе частиц; энергия систем М. а. имеет строго постоянное значение. Понятие М. а., введённое Дж. У. Гиббсом в 1901, является идеализацией, т.к. в действительности полностью изолированных систем не существует.
В классической статистике статистический ансамбль характеризуется функцией распределения f (qi, pi), зависящей от координат qi и импульсов pi всех частиц системы. Эта функция определяет вероятность микроскопического состояния системы, т. е. вероятность того, что координаты и импульсы частиц системы имеют определённые значения. Согласно микроканоническому распределению Гиббса, все микроскопические состояния, отвечающие данной энергии, равновероятны. (Данная энергия системы может быть реализована при различных значениях координат и импульсов частиц системы.)
Если через H (qi, pi) обозначить энергию системы в зависимости от координат и импульсов (функцию Гамильтона), а через Е — заданное значение энергии, то
f (qi, pi) = A δ{H (qi, pi) E},
где δ — Дельта-функция Дирака, а постоянная А определяется условием нормировки (суммарная вероятность пребывания системы во всех возможных состояниях, определяемая интегралом от f (qi, pi) по всем qi, pi, равна 1) и зависит от объёма и энергии системы.
В квантовой статистике рассматривается ансамбль энергетически изолированных квантовых систем (с постоянным объёмом V и полным числом частиц N), имеющих одинаковую энергию E с точностью до ΔE