Большая Советская энциклопедия - распределения
Связанные словари
Распределения
одно из основных понятий теории вероятностей и математической статистики. Р. вероятностей какой-либо случайной величины, т. е. величины, принимающей в зависимости от случая то или иное численное значение, задаётся указанием возможных значений этой величины и соответствующих им вероятностей. Так, например, для числа m очков, выпадающих на верхней грани игральной кости, Р. вероятностей pm задаётся табличкой:
------------------------------------------------------------------------------------------------------------------------------------------------------------------
| Возможные значения m | 1 | 2 | 3 | 4 | 5 | 6 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Соответствующие | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 | 1/6 |
| вероятности pm | | | | | | |
-----------------------------------------------------------------------------------------------------------------------------------------------------------------Подобным же образом Р. любой случайной величины X, возможные значения которой образуют конечную или бесконечную последовательность, задаётся указанием этих значений
x1, x2, ..., xn, ...
и соответствующих им вероятностей
p1, p2, ..., pn, ...
При этом вероятности pm должны быть положительны и в сумме должны давать единицу. Р. указанного типа называются дискретными. Примером дискретного Р. может служить Пуассона распределение, определяемое вероятностями
0— параметр.
Однако задание Р. указанием возможных значений xn и соответствующих вероятностей pn не всегда возможно. Например, если величина распределена «равномерно» на отрезке [—1/2, +1/2], подобно «ошибкам округления» при измерении непрерывных величин, то вероятность каждого отдельного значения равна нулю. Р. таких случайных величин задаётся указанием вероятности того, что случайная величина Х примет значение из любого наперёд заданного интервала. В том случае, когда существует функция pX (x) такая, что вероятность попадания Х в любой интервал (а, b) равна
Р. величины Х называется непрерывным. Функция pX (x) носит название плотности вероятности (См. Плотность вероятности). Плотность вероятности неотрицательна и обладает тем свойством, что
В указанном выше случае равномерного Р. на отрезке [—1/2, +1/2]
Важнейшее Р. непрерывного типа — Нормальное распределение с плотностью
(а и σ > 0 — параметры).
Р. случайных величин не исчерпываются дискретным и непрерывным типами: они могут быть и более сложной природы. Поэтому желательно иметь такое описание Р., которое было бы пригодно во всех случаях. Это описание может быть достигнуто, например, при помощи т. н. функции распределения FX (x). Значение этой функции при каждом фиксированном х равно вероятности Р {Х < х} того, что случайная величина х примет значение, меньшее x, т. е.
FX (x) = Р {Х