Большая Советская энциклопедия - особая точка
Связанные словари
Особая точка
в математике.
1) Особая точка кривой, заданной уравнением F (x, у) = 0, — точка М0(х0, y0), в которой обе частные производные функции F (x, у) обращаются в нуль:
0, то О. т. называется изолированной; например, у кривой у 2 — х 4 + 4x 2 = 0 начало координат есть изолированная О. т. (см. рис. 1). Если Δ < 0, то О. т. называется узловой, или точкой самопересечения; например, у кривой (x 2 + y 2 + a2)2 — 4a 2x 2 — a 4 = 0 начало координат есть узловая О. т. (см. рис. 2). Если Δ = 0, то О. т. кривой является либо изолированной, либо характеризуется тем, что различные ветви кривой имеют в этой точке общую касательную, например: а) точка возврата 1-го рода — различные ветви кривой расположены по разные стороны от общей касательной и образуют остриё, как у кривой у 2 — х 3 = 0 (см. рис. 3, a); б) точка возврата 2-го рода — различные ветви кривой расположены по одну сторону от общей касательной, как у кривой (у — x 2)2 — х 5 = 0 (см. рис. 3, б); в) точка самоприкосновения (для кривой у 2 — х 4 = 0 начало координат является точкой самоприкосновения; (см. рис. 3, в). Наряду с указанными О. т. имеется много других О. т. со специальными названиями; например, асимптотическая точка — вершина спирали с бесконечным числом витков (см. рис. 4), точка прекращения, угловая точка и т.д.
Лит. см. при ст. Дифференциальная геометрия.
2) Особая точка дифференциального уравнения — точка, в которой одновременно обращаются в нуль и числитель и знаменатель правой части дифференциального уравнения (См. Дифференциальные уравнения)