Большая Советская энциклопедия - проективная метрика
Связанные словари
Проективная метрика
способ измерения длин и углов средствами проективной геометрии (См. Проективная геометрия). Он состоит в закреплении некоторой фигуры в качестве абсолюта, определяющего данную метрическую геометрию, и выделении из группы всех проективных преобразований таких, которые отображают абсолют в себя и порождают т. о. соответствующую группу движений. Например, метрика плоскости Лобачевского получается, если за абсолют принять нераспадающуюся действительную линию второго порядка,— тогда длина отрезка AB равна λ ln (ABPQ), где Р и Q — точки пересечения прямой AB с абсолютом, (ABPQ) — двойное отношение, λ — константа, одинаковая для всех отрезков. Если для измерения длин и углов используется линия второго порядка без действительных точек. то получается (эллиптическая) геометрия Римана. Для построения евклидовой и псевдоевклидовой геометрий выбирают вырожденные линии второго порядка.
Лит.: Ефимов Н. В., Высшая геометрия, 5 изд., М., 1971; Клейн Ф., Неевклидова геометрия, пер. с нем., М. — Л.,1936.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978