Большая Советская энциклопедия - статистические оценки
Связанные словари
Статистические оценки
функции от результатов наблюдений, употребляемые для статистического оценивания (См. Статистическое оценивание) неизвестных параметров распределения вероятностей изучаемых случайных величин. Например, если X1,..., Xn — независимые случайные величины, имеющие одно и то же Нормальное распределение с неизвестным средним значением а, то функции — среднее арифметическое результатов наблюдений
и выборочная Медиана μ = μ(X1,..., Xn) являются возможными точечными С. о. неизвестного параметра а. В качестве С. о. какого-либо параметра θ естественно выбрать функцию θ*(X1,..., Xn) от результатов наблюдений X1,..., Xn, в некотором смысле близкую к истинному значению параметра. Принимая какую-либо меру «близости» С. о. к значению оцениваемого параметра, можно сравнивать различные оценки по качеству. Обычно мерой близости оценки к истинному значению параметра служит величина среднего значения квадрата ошибки
(выражающаяся через Математическое ожидание оценки E0θ* и её дисперсию (См. Дисперсия) D0θ*). В классе всех несмещённых оценок (См. Несмещённая оценка) (для которых E0θ* = 0) наилучшими с этой точки зрения будут оценки, имеющие при заданном n минимальную возможную дисперсию при всех θ. Указанная выше оценка Х для параметра а нормального распределения является наилучшей несмещенной оценкой, поскольку дисперсия любой другой несмещенной оценки а* параметра а удовлетворяет неравенству