Физическая энциклопедия - электронная микроскопия
Электронная микроскопия
совокупность методов исследования с помощью электронных микроскопов (МЭ) микроструктур тел (вплоть до атомно-молекулярного уровня), их локального состава и локализованных на поверхностях или в микрообъёмах тел электрич. и магн. полей («микрополей»). Э. м. включает также усовершенствование и разработку новых МЭ и др. корпускулярных микроскопов (напр.
, протонного микроскопа) и приставок к ним; разработку методик подготовки образцов, исследуемых в МЭ; изучение механизмов формирования электронно-оптич. изображений; разработку способов анализа получаемой информации. Объекты исследования в Э. м.обычно тв. тела. В просвечивающих МЭ (ПЭМ) эл-ны с энергиями от 1 кэВ до 5 МэВ проходят сквозь объект, поэтому изучаются образцы в виде тонких плёнок, фольги (рис.
1), срезов и т.п. толщиной от 1 нм до 10 мкм (от 10 A до 105 A). Микрокристаллы, порошки, аэрозоли и т. п. можно изучать, нанеся их предварительно на подложку: тонкую плёнку для исследования в ПЭМ или массивную подложку для исследования в растровых МЭ (РЭМ). Поверхностную и приповерхностную структуру массивных тел толщиной существенно больше 1 мкм исследуют с помощью РЭМ (рис.
2), отражательных, зеркальных МЭ, ионных проекторов и электронных проекторов. Поверхностная геом. структура массивных тел изучается также и методом реплик: с поверхности такого тела снимается отпечаток в виде тонкой плёнки углерода, коллодия, формвара и т. п., повторяющий рельеф поверхности и рассматриваемый в ПЭМ. Обычно предварительно на реплику в вакууме напыляется под скользящим (малым к поверхности) углом слой сильно рассеивающего эл-ны тяжёлого металла (напр.
, Pt), оттеняющий выступы и впадины геом. рельефа т. н. метод декорирования. Этот метод позволяет исследовать не только геом. структуры поверхностей, но и микрополя, обусловленные дислокациями (рис. 3), скоплениями точечных дефектов (см. ДЕФЕКТЫ В КРИСТАЛЛАХ), ступенями роста крист. граней, доменной структурой (см. ДОМЕНЫ) и т. д. В этом случае на поверхность образца вначале напыляется очень тонкий слой декорирующих ч-ц (атомы Au, Pt, молекулы полупроводников или диэлектриков), осаждающихся преим. на участках сосредоточения микрополей, а затем снимается реплика с включениями декорирующих ч-ц.Рис. 1. Полученное в просвечивающем электронном микроскопе изображение сетки дислокаций на границах зёрен в тонкой молибденовой фольге, деформированной при высокотемпературном нагреве. Рис. 2. Изображение предварительно отполированной, а затем подвергнутой ионной бомбардировке поверхности монокристалла меди. Снято в растровом электронном микроскопе.
Увеличение 3000. Рис. 3. Винтовые дислокации на поверхности кристалла NaCl, подвергнутого термич. травлению при температуре 773 К. Изображение получено методом декорирования. С помощью газовых микрокамер приставок к ПЭМ или РЭМ можно изучать жидкие и газообразные объекты, неустойчивые к воздействию высокого вакуума, в т.ч. влажные биол. препараты. Радиационное воздействие облучающего электронного пучка довольно велико, поэтому при исследовании биол., полупроводниковых, полимерных и т. п. объектов необходимо тщательно выбирать режим работы МЭ, обеспечивающий минимальную дозу облучения. Наряду с исследованием статических, не меняющихся во времени объектов Э.
м. даёт возможность изучать разл. процессы в динамике их развития: рост плёнок, деформацию кристаллов под действием переменной нагрузки, изменение структуры под влиянием электронного или ионного облучения и т. д. Благодаря малой инерционности эл-нов можно исследовать периодические во времени процессы, напр. перемагничивание тонких магнитных плёнок, изменение поляризации сегнетоэлектриков, распространение УЗ волн и т.д. Эти исследования проводят методами стробоскопической Э. м. (рис. 4): образец «освещается» электронным пучком не непрерывно, а импульсно, синхронно с подачей импульсного напряжения на образец, что обеспечивает фиксацию на экране прибора определённой фазы процесса точно так же, как это происходит в светооптич. стробоскопических приборах.
Предельное временное разрешение при этом может в принципе составлять ок. 10-15 с для ПЭМ (пока практически реализовано разрешение =10-12 с для ПЭМ и РЭМ). Аморфные и квазиаморфные тела, размеры ч-ц к-рых меньше разрешаемого в МЭ расстояния, рассеивают эл-ны диффузно. Для их исследования используются простейшие методы амплитудной Э.
м. Напр., в ПЭМ контраст изображения, т. е. перепад яркостей изображения соседних участков объекта, в первом приближении пропорционален перепаду толщин этих участков. Для расчёта контраста изображений крист. тел и решения обратной задачи расчёта структуры объекта по наблюдаемому изображению привлекаются методы фазовой Э. м.: решается задача о дифракции электронов (см. ДИФРАКЦИЯ МИКРОЧАСТИЦ, ЭЛЕКТРОНОГРАФИЯ) на крист. решётке. При этом дополнительно учитываются неупругие вз-ствия эл-нов с объектом: рассеяние на плазмонах, фононах и т. п. Рис. 4. Изображения поверхности кремниевого ПП диода, полученные в стробоскопич. эмиссионном электронном микроскопе: а напряжение на диоде отсутствует; б на диод подано запирающее напряжение 40 В, тёмная область падение напряжения на p n-переходе; в кратковременное (менее 40 нс) прямое падение напряжения (широкая тёмная область) на базе диода при переключении его в состояние, при к-ром он «отперт». Рис. 5. Изображение доменной структуры тонкой, однородной по толщине пермаллоевой плёнки.Снято в просвечивающем электронном микроскопе при дефокусировке изображения (метод лоренцевой электронной микроскопии). Светлые и тёмные узкие полосы границы доменов. Видна «рябь» намагниченности, возникающая вследствие малых изменении направлений векторов намагниченности (отмечены стрелками) внутри доменов. В ПЭМ и растровых ПЭМ (ПРЭМ) высокого разрешения получают изображения отд.
молекул или атомов тяжёлых элементов; пользуясь методами фазовой Э. м., восстанавливают по изображениям трёхмерную структуру кристаллов и биол. макромолекул. Для решения подобных задач применяют, в частности, методы голографии, а расчёты производят на ЭВМ. Разновидность фазовой Э. м.интерференционная Э. м., аналогичная оптич.
интерферометрии (см. ИНТЕРФЕРОМЕТР): электронный пучок расщепляется с помощью электронных призм, и в одном из плеч интерферометра устанавливается образец, изменяющий фазу проходящей сквозь него электронной волны. Этим методом можно измерить, напр., внутр. электрич. потенциал образца. С помощью т. н. лоренцовой Э. м., в к-рой изучают явления, обусловленные Лоренца силой, исследуют внутр. магн. и электрич. поля или внеш. поля рассеяния, напр. поля магн. доменов в тонких плёнках (рис. 5), сегнетоэлектрич. доменов, поля головок для магн. записи информации и т. п. Состав объектов исследуется методами микродифракции, т. е. электронографии локальных участков объекта; методами рентг. и катодолюминесцентного локального спектр. микроанализа (см. КАТОДОЛЮМИНЕСЦЕНЦИЯ, СПЕКТРАЛЬНЫЙ АНАЛИЗ РЕНТГЕНОВСКИЙ); регистрируется рентг. излучение на характеристических частотах или Катодолюминесценция, возникающие при бомбардировке образца сфокусированным пучком эл-нов (диаметр электронного «зонда» менее 1 мкм).Рис. 6. Изображение линий равной напряжённости поля (от 25 до 150 Гс через 25 Гс) над зазором магн. головки (ширина зазора 26=2 мкм) для магн. записи информации. Получено в растровом электронном микроскопе со спец. приставкой. Кроме того, изучаются энергетич. спектры вторичных эл-нов, выбитых первичным электронным пучком с поверхности или из объёма образца (см.
ОЖЕ-СПЕКТРОСКОНИЯ). Интенсивно разрабатываются методы количеств. Э. м.точного измерения разл. параметров образца или исследуемого процесса, напр, измерение локальных электрич. потенциалов, магн. полей (рис. 6), микрогеометрии поверхностного рельефа и т. д. МЭ используются и в технологич. целях (напр., для изготовления микросхем методом электронолитографии). .