Энциклопедия Кольера - ядер деление
Ядер деление
См. также
Энергетические Ресурсы;
Атомная Энергетика. Ключом к практическому использованию энергии деления явилось то обстоятельство, что некоторые элементы испускают нейтроны в процессе деления. Хотя при делении ядра один нейтрон поглощается, эта потеря восполняется благодаря возникновению новых нейтронов в процессе деления. Если устройство, в котором происходит деление, обладает достаточно большой ("критической") массой, то за счет новых нейтронов может поддерживаться "цепная реакция". Цепной реакцией можно управлять, регулируя число нейтронов, способных вызывать деление. Если оно больше единицы, то интенсивность деления увеличивается, а если меньше единицы уменьшается.
ИСТОРИЧЕСКАЯ СПРАВКА
История открытия деления ядер берет начало с работы А. Беккереля (1852-1908). Исследуя в 1896 фосфоресценцию различных материалов, он обнаружил, что минералы, содержащие уран, самопроизвольно испускают излучение, вызывающее почернение фотопластинки даже если между минералом и пластинкой поместить непрозрачное твердое вещество. Различные экспериментаторы установили, что это излучение состоит из альфа-частиц (ядер гелия), бета-частиц (электронов) и гамма-квантов (жесткого электромагнитного излучения). Первое превращение ядер, искусственно вызванное человеком, осуществил в 1919 Э.Резерфорд, который превратил азот в кислород, облучив азот альфа-частицами урана. Эта реакция сопровождалась поглощением энергии, поскольку масса ее продуктов кислорода и водорода превышает массу частиц, вступающих в реакцию, азота и альфа-частиц. Выделение же ядерной энергии впервые удалось осуществить в 1932 Дж. Кокрофту и Э. Уолтону, бомбардировавшим литий протонами. В этой реакции масса вступавших в реакцию ядер была несколько больше массы продуктов, в результате чего и происходило выделение энергии. В 1932 Дж. Чедвик открыл нейтрон нейтральную частицу с массой, примерно равной массе ядра атома водорода. Физики всего мира занялись изучением свойств этой частицы. Предполагалось, что лишенный электрического заряда и не отталкиваемый положительно заряженным ядром нейтрон будет с большей вероятностью вызывать ядерные реакции. Более поздние результаты подтвердили эту догадку. В Риме Э.Ферми с сотрудниками подвергли облучению нейтронами почти все элементы периодической системы и наблюдали ядерные реакции с образованием новых изотопов. Доказательством образования новых изотопов служила "искусственная" радиоактивность в форме гамма и бета-излучений.
См. также Радиоактивность.
Первые указания на возможность деления ядер. Ферми принадлежит открытие многих нейтронных реакций, известных сегодня. В частности, он пытался получить элемент с порядковым номером 93 (нептуний), бомбардируя нейтронами уран (элемент с порядковым номером 92). При этом он регистрировал электроны, испускаемые в результате захвата нейтронов в предполагаемой реакции 238U + 1n -> 239Np + b-, где 238U изотоп урана-238, 1n нейтрон, 239Np нептуний и b электрон. Однако результаты оказались неоднозначными. Чтобы исключить возможность того, что регистрируемая радиоактивность принадлежит изотопам урана или другим элементам, расположенным в периодической системе перед ураном, пришлось проводить химический анализ радиоактивных элементов. Результаты анализа показали, что неизвестным элементам соответствуют порядковые номера 93, 94, 95 и 96. Поэтому Ферми сделал вывод, что он получил трансурановые элементы. Однако О.Ган и Ф.Штрасман в Германии, проведя тщательный химический анализ, установили, что среди элементов, возникающих в результате облучения урана нейтронами, присутствует радиоактивный барий. Это означало, что, вероятно, часть ядер урана делится на два крупных осколка.
Подтверждение возможности деления. После этого Ферми, Дж.Даннинг и Дж.Пеграм из Колумбийского университета провели эксперименты, которые показали, что деление ядер действительно имеет место. Деление урана нейтронами было подтверждено методами пропорциональных счетчиков, камеры Вильсона, а также накопления осколков деления. Первый метод показал, что при приближении источника нейтронов к образцу урана испускаются импульсы большой энергии. В камере Вильсона было видно, что ядро урана, бомбардируемое нейтронами, расщепляется на два осколка. Последний метод позволил установить, что, как и предсказывала теория, осколки радиоактивны. Все это вместе взятое убедительно доказывало, что деление действительно происходит, и давало возможность уверенно судить об энергии, выделяющейся при делении.
См. также Детекторы Частиц. Поскольку допустимое отношение числа нейтронов к числу протонов в стабильных ядрах уменьшается с уменьшением размеров ядра, доля нейтронов у осколков должна быть меньше, чем у исходного ядра урана. Таким образом, были все основания предполагать, что процесс деления сопровождается испусканием нейтронов. Вскоре это было экспериментально подтверждено Ф. Жолио-Кюри и его сотрудниками: число нейтронов, испускаемых в процессе деления, было больше числа поглощенных нейтронов. Оказалось, что на один поглощенный нейтрон приходится приблизительно два с половиной новых нейтрона. Сразу стали очевидны возможность цепной реакции и перспективы создания исключительно мощного источника энергии и его использования в военных целях. После этого в ряде стран (особенно в Германии и США) в условиях глубокой секретности начались работы по созданию атомной бомбы.
Разработки в период Второй мировой войны. С 1940 по 1945 направление разработок определялось военными соображениями. В 1941 были получены небольшие количества плутония и установлен ряд ядерных параметров урана и плутония. В США важнейшие необходимые для этого производственные и научно-исследовательские предприятия были в ведении "Манхаттанского военно-инженерного округа", которому 13 августа 1942 был передан "Урановый проект". В Колумбийском университете (Нью-Йорк) группой сотрудников под руководством Э.Ферми и В.Цинна были проведены первые эксперименты, в которых изучалось размножение нейтронов в решетке из блоков диоксида урана и графита атомном "котле". В январе 1942 эта работа была перенесена в Чикагский университет, где в июле 1942 были получены результаты, показывавшие возможность осуществления самоподдерживающейся цепной реакции. Первоначально реактор работал на мощности 0,5 Вт, но спустя 10 дней мощность была доведена до 200 Вт. Возможность получения больших количеств ядерной энергии была впервые продемонстрирована 16 июля 1945 при взрыве первой атомной бомбы на полигоне в Аламогордо (шт. Нью-Мексико).
ЯДЕРНЫЕ РЕАКТОРЫ
Ядерный реактор это установка, в которой возможно осуществление управляемой самоподдерживающейся цепной реакции деления ядер. Реакторы можно классифицировать по используемому топливу (делящимся и сырьевым изотопам), по виду замедлителя, по типу тепловыделяющих элементов и по роду теплоносителя.
Делящиеся изотопы. Имеются три делящихся изотопа уран-235, плутоний-239 и уран-233. Уран-235 получают разделением изотопов; плутоний-239 в реакторах, в которых уран-238 превращается в плутоний, 238U -> 239U -> 239Np -> 239Pu; уран-233 в реакторах, в которых торий-232 перерабатывается в уран. Ядерное топливо для энергетического реактора выбирается с учетом его ядерных и химических свойств, а также стоимости. В приводимой ниже таблице представлены основные параметры делящихся изотопов. Полное сечение характеризует вероятность взаимодействия любого типа между нейтроном и данным ядром. Сечение деления характеризует вероятность деления ядра нейтроном. От того, какая доля ядер не участвует в процессе деления, зависит выход энергии на один поглощенный нейтрон. Число нейтронов, испускаемых в одном акте деления, важно с точки зрения поддержания цепной реакции. Число новых нейтронов, приходящихся на один поглощенный нейтрон, важно, поскольку характеризует интенсивность деления. Доля запаздывающих нейтронов, испускаемых после того, как деление произошло, связана с энергией, запасенной в данном материале.
Данные таблицы показывают, что каждый делящийся изотоп имеет свои преимущества. Например, в случае изотопа с наибольшим сечением для тепловых нейтронов (с энергией 0,025 эВ) нужно меньше топлива для достижения критической массы при использовании замедлителя нейтронов. Поскольку наибольшее число нейтронов на один поглощенный нейтрон возникает в плутониевом реакторе на быстрых нейтронах (1 МэВ), в режиме воспроизводства лучше использовать плутоний в быстром реакторе или уран-233 в тепловом реакторе, чем уран-235 в реакторе на тепловых нейтронах. Уран-235 более предпочтителен с точки зрения простоты управления, поскольку у него больше доля запаздывающих нейтронов.
Сырьевые изотопы. Имеются два сырьевых изотопа: торий-232 и уран-238, из которых получаются делящиеся изотопы уран-233 и плутоний-239. Технология использования сырьевых изотопов зависит от разных факторов, например от необходимости обогащения. В урановой руде содержится 0,7% урана-235, а в ториевой нет делящихся изотопов. Поэтому к торию необходимо добавлять обогащенный делящийся изотоп. Важное значение имеет и число новых нейтронов, приходящееся на один поглощенный нейтрон. С учетом этого фактора приходится отдать предпочтение урану-233 в случае тепловых нейтронов (замедленных до энергии 0,025 эВ), поскольку при таких условиях больше число испускаемых нейтронов, а следовательно, и коэффициент преобразования число новых делящихся ядер на одно "затраченное" делящееся ядро. Замедлители. Замедлитель служит для уменьшения энергии нейтронов, испускаемых в процессе деления, примерно от 1 МэВ до тепловых энергий около 0,025 эВ. Поскольку замедление происходит главным образом в результате упругого рассеяния на ядрах неделящихся атомов, масса атомов замедлителя должна быть как можно меньше, чтобы нейтрон мог передавать им максимальную энергию. Кроме того, у атомов замедлителя должно быть мало (по сравнению с сечением рассеяния) сечение захвата, так как нейтрону приходится многократно сталкиваться с атомами замедлителя, прежде чем он замедляется до тепловой энергии. Наилучшим замедлителем является водород, поскольку его масса почти равна массе нейтрона и, следовательно, нейтрон при соударении с водородом теряет наибольшее количество энергии. Но обычный (легкий) водород слишком сильно поглощает нейтроны, а потому более подходящими замедлителями, несмотря на несколько большую массу, оказываются дейтерий (тяжелый водород) и тяжелая вода, так как они меньше поглощают нейтроны. Хорошим замедлителем можно считать бериллий. У углерода столь малое сечение поглощения нейтронов, что он эффективно замедляет нейтроны, хотя для замедления в нем требуется гораздо больше столкновений, чем в водороде. Среднее число N упругих столкновений, необходимое для замедления нейтрона от 1 МэВ до 0,025 эВ, при использовании водорода, дейтерия, беррилия и углерода составляет приблизительно 18, 27, 36 и 135 соответственно. Приближенный характер этих значений обусловлен тем, что из-за наличия химической энергии связи в замедлителе столкновения при энергиях ниже 0,3 эВ вряд ли могут быть упругими. При низких энергиях атомная решетка может передавать энергию нейтронам или изменять эффективную массу в столкновении, нарушая этим процесс замедления.
Теплоносители. В качестве теплоносителей в ядерных реакторах используются вода, тяжелая вода, жидкий натрий, жидкий сплав натрия с калием (NaK), гелий, диоксид углерода и такие органические жидкости, как терфенил. Эти вещества являются хорошими теплоносителями и имеют малые сечения поглощения нейтронов. См. также ТЕПЛООБМЕННИК. Вода представляет собой прекрасный замедлитель и теплоноситель, но слишком сильно поглощает нейтроны и имеет слишком высокое давление паров (14 МПа) при рабочей температуре 336В° С. Лучший из известных замедлителей тяжелая вода. Ее характеристики близки к характеристикам обычной воды, а сечение поглощения нейтронов меньше. Натрий является прекрасным теплоносителем, но не эффективен как замедлитель нейтронов. Поэтому его используют в реакторах на быстрых нейтронах, где при делении испускается больше нейтронов. Правда, натрий имеет ряд недостатков: в нем наводится радиоактивность, у него низкая теплоемкость, он химически активен и затвердевает при комнатной температуре. Сплав натрия с калием сходен по свойствам с натрием, но остается жидким при комнатной температуре. Гелий прекрасный теплоноситель, но у него мала удельная теплоемкость. Диоксид углерода представляет собой хороший теплоноситель, и он широко применялся в реакторах с графитовым замедлителем. Терфенил имеет то преимущество перед водой, что у него низкое давление паров при рабочей температуре, но он разлагается и полимеризуется под действием высоких температур и радиационных потоков, характерных для реакторов.