Энциклопедия Брокгауза и Ефрона - антиточки
Антиточки
(антипункты) — так называют две пары фокусов кривых какого угодно порядка, причем одна пара этих фокусов вещественная, другая мнимая. А именно фокус кривой можно определить как точку пересечения касательных к данной кривой, проведенных через бесконечно удаленные мнимые циклические точки плоскости. Если I и J суть эти две точки, то паре вещественных фокусов А, А' пересечения касательных AI, A'I, AJ, A'J, соответствует пара мнимых точек В, В' пересечения тех же прямых. Если дано ν фокусов какой-нибудь кривой ν-го класса, то все остальные могут быть найдены как антипункты тех комбинаций, которые можно составить из этих точек. Так как число таких пар = 1/2ν(ν—1) и они дают столько же пар антипунктов, то общее число найденных фокусов будет ν+2[1/2ν(ν—1)] = ν2, т. е. полное число.
Прямые АА' и ВВ', соединяющие соответственные пары антипунктов, пересекаются под прямым углом и делятся при этом на равные отрезки, так что если О есть их (вещественная) точка пересечения, то
OA = OA' = iOB = iOB'.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон
1890—1907