Энциклопедия Брокгауза и Ефрона - минимум
Минимум
(математич.) — М. вообще называется наименьшая из рассматриваемых величин. В математическом анализе этим словом обозначают то значение функции, начиная от которого она, как при увеличении, так и при уменьшении переменных, прибывает — другими словами, наименьшее значение функции по сравнению с соседними ее значениями. Нахождение М. производится по тем же правилам, как и нахождение максимумов (см. Максимум). Различие заключается в следующем: если при увеличении независимой переменной первая производная данной функции, проходя значение равное нулю, переходит от отрицательных значений к положительным, то имеем дело с минимумом. В противном случае, то есть при переходе первой производной от отрицательных значений к положительным при возрастании независимой переменной, имеем дело с максимумом. Нахождение минимумов играет в математическом анализе весьма важную роль: все вариационное исчисление есть не что иное, как теория определения М. определенных интегралов; изобретенная Чебышевым теория функций, наименее уклоняющихся от нуля, тоже занимается вопросами этого рода и т. д. (см. Максимум).
И. Делоне.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон
1890—1907