Поиск в словарях
Искать во всех

Энциклопедия Брокгауза и Ефрона - россия. русская наука математика

Россия. русская наука математика

Эпоха письменных памятников застает в России употребление десятичной системы счисления в пределах 1—10000 (тьма) и дробей двоичной системы вместе с некоторыми другими простейшими дробями вроде 1/3, 1/5, 1/7 и их подразделениями по двоичной системе. Вместе с церковно-славянским алфавитом русские получили от греко-болгарского духовенства письменное счисление по методу обозначения кратных единиц разрядов особыми значками в тех же пределах 1—10000, которые имели и сами русские. Скоро затем не замедлила обнаружиться и национальная склонность русского народа к разработке математики в арифметическо-алгебраическом направлении. Русские "числолюбцы" стали переходить в развитии счисления за пределы, устанавливаемые потребностями обыденной жизни. Новгородский монах Кирик, написавший в 1134 году сочинение о хронологических и пасхальных вычислениях, доводит подразделения по пятеричной системе до единицы 7 — го разряда, т. е. до дроби 1/78125. Счисление в XII в.

распространилось до 10000000 и в XIII-XVI веках, постепенно — до единиц разрядов 13 — го, 48 — го, 49 — го и, наконец, 50 — го, а двоичные дроби, употребляемые в допетровскую эпоху в мерах земельных и зерновых, до единицы 10 — го разряда, т. е. до дроби 1/1024. В письменном счислении русские стали помещать знак в кружках и фигурах различного вида, выражающих другие разряды.

Русская деятельность в области науки чисел проявилась также в решении задач, с древнего времени и до наших дней находящихся в обращении между русскими крестьянами и принадлежащих часто к решению уравнений 1 — й степени с одним неизвестным или к неопределенному анализу. Средством решения этих и подобных им задач был метод попыток. Следы занятий русских геометрией являются впервые в рукописях по землемерию XVI века. Приемы определения площадей земельных участков не шли выше ложного учения о равенстве площадей и фигур при равенстве их периметров. В дальнейшем движении математических знаний все внимание было обращено на арифметику, из геометрии же заимствовались только немногие сведения, нужные для землемерия.

Начав с пасхалии, хронологических вычислений и нужных для них частей арифметики, русские наконец достигли в своих арифметических рукописях XVII в. полноты изложения, одинаковой с оригиналами, преимущественно германскими учебниками XV и XVI веков, при посредстве которых также перешла в Россию индусская система письменного счисления.

В упомянутых рукописях рассматривались: нумерация, четыре основные действия над целыми числами, счет костьми (в Западной Европе счетными пфеннигами или жетонами), употребление счетов, русская и иностранная метрология, действия над именованными числами, дроби и действия над ними, тройные правила, деловая статья (пропорциональное деление), статья о росте, мена, правило товарищества, правило смещения, правила ложных положений и собрание задач увеселительного характера. Предметом же геометрических рукописей XVII в. было землемерие и его географические приложения в смысле проведения границ между государствами и даже частями света, доставления данных для решения вопросов о сравнительной величине различных государств и измерения расстояний между городами.

Введения в рукописи, посвященные геометрии, занимались поэтому рассуждениями на географические темы в такой степени, что могли бы быть приняты за заимствования из рукописей, занимающихся географией или даже космографией в духе Козмы Индикоплова. В некоторых землемерных рукописях XVII в. находятся уже точные способы вычисления площадей прямоугольного треугольника и прямоугольной трапеции.

Другим важным заимствованием у иностранцев было извлечение квадратного корня и его приложение к решению различных землемерных задач. К землемерию присоединялись еще и некоторые другие вопросы практической геометрии (расстояние между двумя местами, расстояние места от наблюдателя, высота предмета, определение численности войска по занимаемому им месту) и практической стереометрии (объем житниц и вместимость бочек). Способы их решения не могут быть, однако, отнесены к области научной геометрии. Заимствовано из западноевропейских источников также извлечение кубического корня. До начала XVIII в. занятия русских математическими науками происходили без всякого вмешательства государства и вполне согласовались с особенностями национального умственного склада. В учрежденной в 1701 году в Москве школе математических и навигацких наук и в других основанных позднее школах того же типа русские должны были заниматься геометрией в не меньших размерах, чем и арифметикой.

В русской учебной литературе, наряду с "Арифметикой, сиречь наукой числительной" (1703) учителя школы математических и навигацких наук Магницкого, появляется в 1708 году "Геометрия славянского землемерия", или "Приемы циркуля и линейки...", учебник, не выходивший из пределов того, что требовалось для изучения практической геометрии.

Догматический метод изложения, требовавший только заучивания наизусть правил и схем их приложений к частным примерам, узкопрактические цели преподавания и насильственное привлечение к изучению наук множества лиц, не имеющих к этому ни малейшей склонности, — все это не могло приготовить способных к самодеятельности работников в области чистой науки. Зато приготовление деятелей-практиков удалось вполне школе математических и навигацких наук. Наблюдения и измерения, произведенные вышедшими из школы геодезистами и гидрографами, доставили материалы для издания в 1726—34 годах первой "Генеральной карты" всей России и первого атласа, озаглавленного "Atlas Imperii Russici etc.

", или в русском переводе "Атлас Российской империи", состоящего из 14 карт. Он остался неоконченным по истощении денежных средств у предпринявшего его издание частного лица, Ивана Кириллова. В 1725 году появилась Петербургская академия наук. При ней учреждены университет, в котором академики должны были читать лекции в звании профессоров, и гимназия, назначенная для приготовления будущих студентов. Преподавателями в ней были частью лица, посторонние Академии, частью же студенты академического университета и реже адъюнкты. На обязанности академиков лежала еще и разработка каждым вопросов своего специального предмета, результаты которой должны были сообщаться в ученых собраниях Академии, или в "конференциях". Первыми приглашенными из-за границы академиками и профессорами математики были прибывшие в Петербург в 1725 году Герман, Николай II Бернулли, Гольдбах, Даниил Бернулли, Майер и в 1727 году Эйлер. Академиками и профессорами физики были Бюльффингер (1725), Мартини (1725) и Краффт (1728) и механики — Лейтманн (1726). В 1728 году вышел в свет относящийся к 1726 году первый том ученого органа Академии "Commentarii Academiae Imperialis Scientiarum Petropolitanae". Одновременно с ним также вышло на русском языке "Краткое описание комментариев академии наук, часть первая на 1726 год".

В русском издании была сделана первая попытка русской научной терминологии в высших частях математики не только в виде заимствования латинских терминов, но и в виде их замены русскими словами, напр. "De calculo integrali" (Германна), "О счете Интегралном или целственном", "De integrationibus aequationum differentialium etc." (Иоанна Бернулли), " О вцелоприведениях равнении разнственных", "Principia dinamica" (Вольффа), "Начала властителная".

Такие крупные научные силы, как Бернулли и в особенности Эйлер, очень скоро доставили юной Академии выдающееся значение. Однако до появления в издании Академии работ русских ученых оно, как и само учреждение Академии, было только делом мецената, уделяющего часть своих материальных средств на развитие общечеловеческой науки, разрабатываемой иностранцами. Такое положение ученый орган Академии занимал в течение периода 1726—46 годов. Больше трети всех мемуаров по чистой и прикладной математике в этой серии было посвящено аналитической механике. Из чистой математики наиболее разрабатывались: аналитическая геометрия, учение о рядах и интегральное исчисление (дифференциальные уравнения). Значительно меньшее число мемуаров приходилось на долю теории чисел, алгебры и синтетической геометрии и самое незначительное — на долю тригонометрии, вариационного исчисления и особенно теории вероятностей и разностного исчисления (по одному мемуару).

Первая серия академического издания состояла из 14 томов, вторая, под заглавием "Novi Commentarii Academiae scientiarum Imperialis Petropolitanae", состояла из 20 томов и обнимала период 1747—75 года. Как содержащая в себе труды первых русских ученых, воспитанных академическим университетом, Ломоносова — по физике, Попова, Румовского, Иноходцева и Исленьева, главным образом — по астрономии и Котельникова — по разным предметам, она знакомит нас с первыми робкими шагами представителей русской науки. Первыми и единственными во всей серии двумя трудами русских ученых по предмету высшей математики были: посвященные дифференциальному исчислению мемуары Румовского "Solutio problematis cujusdam ad maxima minimave pertinentis" (т. VIII на 1760 и 1761 годы, стр. 189—194) и относящиеся к учению о рядах мемуары Котельникова: "Demonstrationes seriei

.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое россия. русская наука математика
Значение слова россия. русская наука математика
Что означает россия. русская наука математика
Толкование слова россия. русская наука математика
Определение термина россия. русская наука математика
rossiya. russkaya nauka matematika это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины