Поиск в словарях
Искать во всех

Большая Советская энциклопедия - цветовые измерения

Цветовые измерения

методы измерения и количественного выражения цвета. Вместе с различными способами математического описания цвета Ц. и. составляют предмет колориметрии. В результате Ц. и. определяются 3 числа, т. н. цветовые координаты (ЦК), полностью определяющие цвет (при некоторых строго стандартизованных условиях его рассматривания).

Основой математического описания цвета в колориметрии является экспериментально установленный факт, что любой цвет при соблюдении упомянутых условий можно представить в виде смеси (суммы) определённых количеств 3 линейно независимых цветов, т. е. таких цветов, каждый из которых не может быть представлен в виде суммы каких-либо количеств 2 других цветов. Групп (систем) линейно независимых цветов существует бесконечно много, но в колориметрии используются лишь некоторые из них. Три выбранных линейно независимых цвета называют основными цветами (См. Основные цвета); они определяют цветовую координатную систему (ЦКС). Тогда 3 числа, описывающие данный цвет, являются количествами основных цветов в смеси, цвет которой зрительно неотличим от данного цвета; это и есть ЦК данного цвета.

Экспериментальные результаты, которые кладут в основу разработки колориметрической ЦКС, получают при усреднении данных наблюдений (в строго определённых условиях) большим числом наблюдателей; поэтому они не отражают точно свойств цветового зрения (См. Цветовое зрение) какого-либо конкретного наблюдателя, а относятся к т. н. среднему стандартному колориметрическому наблюдателю.

Будучи отнесены к стандартному наблюдателю в определённых неизменных условиях, стандартные данные смешения цветов и построенные на них колориметрической ЦКС описывают фактически лишь физический аспект цвета, не учитывая изменения цветовосприятия глаза при изменении условий наблюдения и по др. причинам (см. Цвет).

Когда ЦК какого-либо цвета откладывают по 3 взаимно перпендикулярным координатным осям, этот цвет геометрически представляется точкой в трёхмерном, т. н. цветовом, пространстве или же Вектором, начало которого совпадает с началом координат, а конец — с упомянутой точкой цвета. Точечная и векторная геометрическая трактовки цвета равноценны и обе используются при описании цветов. Точки, представляющие все реальные цвета, заполняют некоторую область цветового пространства. Но математически все точки пространства равноправны, поэтому можно условно считать, что и точки вне области реальных цветов представляют некоторые цвета. Такое расширение толкования цвета как математического объекта приводит к понятию т. н. нереальных цветов, которые невозможно как-либо реализовать практически. Тем не менее с этими цветами можно производить математические операции так же, как и с реальными цветами, что оказывается чрезвычайно удобным в колориметрии. Соотношение между основными цветами в ЦКС выбирают так, что их количества, дающие в смеси некоторый исходный цвет (чаще всего белый), принимают равными 1.

Своего рода «качество» цвета, не зависящее от абсолютной величины цветового вектора и называется его цветностью, геометрически удобно характеризовать в двумерном пространстве — на «единичной» плоскости цветового пространства, проходящей через 3 единичные точки координатных осей (осей основных цветов). Линии пересечения единичной плоскости с координатными плоскостями образуют на ней равносторонний треугольник, в вершинах которого находятся единичные значения основных цветов. Этот треугольник часто называют треугольником Максвелла. Цветность какого-либо цвета определяется не 3 его ЦК, а соотношением между ними, т. е. положением в цветовом пространстве прямой, проведённой из начала координат через точку данного цвета. Другими словами, цветность определяется только направлением, а не абсолютной величиной цветового вектора, и, следовательно, её можно характеризовать положением точки пересечения этого вектора (либо указанной прямой) с единичной плоскостью. Вместо треугольника Максвелла часто используют цветовой треугольник более удобной формы — прямоугольный и равнобедренный. Положение точки цветности в нём определяется двумя координатами цветности, каждая из которых равна частному от деления одной из ЦК на сумму всех 3 ЦК. Двух координат цветности достаточно, т.к. по определению сумма её 3 координат равна 1. Точка цветности исходного (опорного) цвета, для которой 3 цветовые координаты равны между собой (каждая равна 1/3), находится в центре тяжести цветового треугольника.

Представление цвета с помощью ЦКС должно отражать свойства цветового зрения человека. Поэтому предполагается, что в основе всех ЦКС лежит т. н. физиологическая ЦКС. Эта система определяется 3 функциями спектральной чувствительности (См. Спектральная чувствительность) 3 различных видов приёмников света (См. Приёмники света) (т. н. колбочек), которые имеются в сетчатке (См. Сетчатка) глаза человека и, согласно наиболее употребительной трёхцветной теории цветового зрения, ответственны за человеческое цветовосприятие. Реакции этих 3 приёмников на излучение считаются ЦК в физиологической ЦКС, но функции спектральной чувствительности глаза не удаётся установить прямыми измерениями. Их определяют косвенным путём и не используют непосредственно в качестве основы построения колориметрических систем.

Свойства цветового зрения учитываются в колориметрии по результатам экспериментов со смешением цветов. В таких экспериментах выполняется зрительное уравнивание чистых спектральных цветов (т. е. цветов, соответствующих монохроматическому свету (См. Монохроматический свет) с различными длинами волн) со смесями 3 основных цветов. Оба цвета наблюдают рядом на 2 половинках фотометрического поля сравнения. По достижении уравнивания измеряются количества 3 основных цветов и их отношения к принимаемым за 1 количествам основных цветов в смеси, уравнивающей выбранный опорный белый цвет. Полученные величины будут ЦК уравниваемого цвета в ЦКС, определяемой основными цветами прибора и выбранным опорным белым цветом. Если единичные количества красного, зелёного и синего основных цветов обозначить как (К), (З), (С), а их количества в смеси (ЦК) — К, З, С, то результат уравнивания можно записать в виде цветового уравнения: Ц* = К (К) + З (З) + С (С). Описанная процедура не позволяет уравнять большинство чистых спектральных цветов со смесями 3 основных цветов прибора. В таких случаях некоторое количество одного из основных цветов (или даже двух) добавляют к уравниваемому цвету. Цвет получаемой смеси уравнивают со смесью оставшихся 2 основных цветов прибора (или с одним). В цветовом уравнении это учитывают переносом соответствующего члена из левой части в правую. Так, если в поле измеряемого цвета был добавлен красный цвет, то Ц* = — К (К) + З (З) + С (С). При допущении отрицательных значений ЦК уже все спектральные цвета можно выразить через выбранную тройку основных цветов. При усреднении результатов подобной процедуры для нескольких наблюдателей были получены значения количеств 3 определённых цветов, требующиеся в смесях, зрительно неотличимых от чистых спектральных цветов, которые соответствуют монохроматическим излучениям одинаковой интенсивности. При графическом построении зависимостей количеств основных цветов от длины волны получаются функции длины волны, называемые кривыми сложения цветов или просто кривыми сложения.

Кривые сложения играют в колориметрии большую роль. По ним можно рассчитать количества основных цветов, требуемые для получения смеси, зрительно неотличимой от цвета излучения сложного спектрального состава, т. е. ЦК такого цвета в ЦКС, определяемой данными кривыми сложения. Для этого цвет сложного излучения представляют в виде суммы чистых спектральных цветов, соответствующих его монохроматическим составляющим (с учётом их интенсивности). Возможность подобного представления основана на одном из опытно установленных законов смешения цветов, согласно которому ЦК цвета смеси равны суммам соответствующих координат смешиваемых цветов. Т. о., кривые сложения характеризуют реакции на излучение 3 разных приёмников излучения. Очевидно, что функции спектральной чувствительности 3 типов приёмников в сетчатке глаза человека представляют собой кривые сложения в физиологической ЦКС. Каждой из бесконечно большого числа возможных ЦКС соответствует своя группа из 3 кривых сложения, причём все группы кривых сложения связаны между собой линейными соотношениями. Следовательно, кривые сложения любой из всех 1 возможных ЦКС можно считать линейными комбинациями (см. Линейная зависимость) функций спектральной чувствительности 3 типов приёмников человеческого глаза.

Фактически основой всех ЦКС является система, кривые сложения которой были определены экспериментально описанным выше способом. Её основными цветами являются чистые спектральные цвета, соответствующие монохроматическим излучениям с длинами волн 700,0 (красный), 546,1 (зелёный) и 435,8 нм (синий). Исходная (опорная) цветность — цветность равноэнергетического белого цвета Е (т. е. цвета излучения с равномерным распределением интенсивности по всему видимому спектру). Кривые сложения этой системы, принятой Международной комиссией по освещению (МКО) в 1931 и известной под название международной колориметрической системы МКО RGB (от англ., нем. red, rot — красный, green, grun — зелёный, blue, blau — синий, голубой), показаны на рис. 1.

Кривые сложения системы МКО RGB имеют отрицательные участки (отрицательные количества основных цветов) для некоторых спектральных цветов, что неудобно при расчётах. Поэтому наряду с системой RGB МКО в 1931 приняла др. ЦКС, систему XYZ, в которой отсутствовали недостатки системы RGB и которая дала ряд др. возможностей упрощения расчётов. Основными цветами (X), (Y), (Z) системы XYZ являются нереальные цвета, выбранные так, что кривые сложения этой системы (рис. 2) не имеют отрицательных участков, а координата Y равна яркости (См. Яркость) наблюдаемого окрашенного объекта, т.к. кривая сложения у совпадает с функцией относительной спектральной световой эффективности (См. Спектральная световая эффективность) стандартного наблюдателя МКО для дневного зрения. На рис. 3 показан график цветностей (цветовой треугольник) х, у системы XYZ. На нём приведены линия спектральных цветностей, линия пурпурных цветностей, цветовой треугольник (R) (G) (В) системы МКО RGB, линия цветностей излучения абсолютно чёрного тела и точки цветностей стандартных источников освещения МКО А, В, С и D. Цветность равноэнергетического белого цвета Е (опорная цветность системы XYZ) находится в центре тяжести цветового треугольника системы XYZ. Эта система получила всеобщее распространение и широко используется в колориметрии. Но она не отражает цветоразличительных свойств глаза, т. е. одинаковые расстояния на графике цветностей х, у в различных его частях не соответствуют одинаковому зрительному различию между соответствующими цветами при одинаковой яркости (см. Цветовой контраст).

Создать полностью зрительно однородное цветовое пространство до сих пор не удаётся. В основном это связано с нелинейным характером зависимости зрительного восприятия от интенсивности возбуждения цветочувствительных фоторецепторов (См. Фоторецепторы) (приёмников света в сетчатке глаза). Предложено много эмпирических формул для подсчёта числа цветовых различий (порогов цветоразличения) между разными цветами. Более ограниченная задача — создание зрительно однородного графика цветностей — приблизительно решена. МКО в 1960 рекомендовала такой график u, v, полученный в 1937 Д. Л. Мак-Адамом путём видоизменения графика, предложенного Д. Б. Джаддом (оба — США) на основании многочисленных экспериментальных данных. Для подсчёта числа порогов цветоразличения ΔE между разными цветами в настоящее время (1970-е гг.) по временной рекомендации МКО используется эмпирическая формула Г. Вышецкого:

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое цветовые измерения
Значение слова цветовые измерения
Что означает цветовые измерения
Толкование слова цветовые измерения
Определение термина цветовые измерения
cvetovye izmereniya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины