Большая Советская энциклопедия - лиувилля теорема
Связанные словари
Лиувилля теорема
1) в механике — теорема, утверждающая, что Фазовый объём системы, подчиняющейся уравнениям механики в форме Гамильтона (см. Механики уравнения канонические), остаётся постоянным при движении системы. Л. т. установлена в 1838 французским учёным Ж. Лиувиллем (См. Лиувилль).
Состояние механической системы, определяемое обобщенными координатами (См. Обобщённые координаты) q1, q2, ..., qN и канонически сопряжёнными им обобщёнными импульсами (См. Обобщённые импульсы) р1, p2, ..., pN (где N — число степеней свободы системы), можно рассматривать как точку с прямоугольными декартовыми координатами q1, q2, ..., qN, p1, p2, ..., pN в пространстве 2N измерений, называемом фазовым пространством (См. Фазовое пространство). Эволюция системы во времени представится как движение такой фазовой точки в 2N-мерном пространстве. Если в начальный момент времени фазовые точки непрерывно заполняли некоторую область в фазовом пространстве, а с течением времени перешли в другую область этого пространства, то, согласно Л. т., соответствующие фазовые объёмы равны между собой. Т. о., движение точек, изображающих состояния системы в фазовом пространстве, подобно движению несжимаемой жидкости.
Л. т. позволяет ввести функцию распределения (См. Функция распределения) частиц системы в фазовом пространстве и является основой статистической физики (См. Статистическая физика).
Лит.: Синг Дж. Л., Классическая динамика, пер. с англ., М., 1963; Гиббс Дж., Основные принципы статистической механики, пер. с англ., М., 1946 Леонтович М. А., Статистическая физика, М. — Л., 1944.
2) В теории аналитических функций — теорема, утверждающая, что всякая Целая функция, ограниченная во всей плоскости, тождественно равна постоянной. Л. т, названа по имени Ж. Лиувилля, положившего её в основу своих лекций (1847) по теории эллиптических функций; впервые же она была сформулирована и доказана в 1844 О. Коши.
Большая советская энциклопедия. — М.: Советская энциклопедия
1969—1978