Поиск в словарях
Искать во всех

Большая Советская энциклопедия - регрессионный анализ

Регрессионный анализ

раздел математической статистики, объединяющий практические методы исследования регрессионной зависимости между величинами по статистическим данным (см. Регрессия). Цель Р. а. состоит в определении общего вида уравнения регрессии, построении оценок неизвестных параметров, входящих в уравнение регрессии, и проверке статистических гипотез о регрессии. При изучении связи между двумя величинами по результатам наблюдений (x1, y1), ..., (xn, yn) в соответствии с теорией регрессии предполагается, что одна из них Y имеет некоторое распределение вероятностей при фиксированном значении х другой, так что

Е(Y | х) = g(x, β) и D(Y | х) = σ2h2(x),

где β обозначает совокупность неизвестных параметров, определяющих функцию g(х), a h(x) есть известная функция х (в частности, тождественно равная 1). Выбор модели регрессии определяется предположениями о форме зависимости g(х, β) от х и β. Наиболее естественной с точки зрения единого метода оценки неизвестных параметров β является модель регрессии, линейная относительно β:

g(x, β) = β0g0(x) + ... + βkgk(x).

Относительно значений переменной х возможны различные предположения в зависимости от характера наблюдений и целей анализа. Для установления связи между величинами в эксперименте используется модель, основанная на упрощённых, но правдоподобных допущениях: величина х является контролируемой величиной, значения которой заранее задаются при планировании эксперимента, а наблюдаемые значения у представимы в виде

yi = g(xi, β) + εi, i = 1, ..., k,

где величины εi характеризуют ошибки, независимые при различных измерениях и одинаково распределённые с нулевым средним и постоянной дисперсией σ2. Случай неконтролируемой переменной х отличается тем, что результаты наблюдений (xi, yi), ..., (xn, yn) представляют собой выборку из некоторой двумерной совокупности. И в том, и в другом случае Р. а. производится одним и тем же способом, однако интерпретация результатов существенно различается (если обе исследуемые величины случайны, то связь между ними изучается методами корреляционного анализа (См. Корреляционный анализ)).

Предварительное представление о форме графика зависимости g(x) от х можно получить по расположению на диаграмме рассеяния (называемой также корреляционным полем, если обе переменные случайные) точек (xi,(xi)), где (xi) средние арифметические тех значений у, которые соответствуют фиксированному значению xi. Например, если расположение этих точек близко к прямолинейному, то допустимо использовать в качестве приближения линейную регрессию. Стандартный метод оценки линии регрессии основан на использовании полиномиальной модели (m ≥ 1)

y(x, β) = β0 + β1x + ... + βmxm

(этот выбор отчасти объясняется тем, что всякую непрерывную на некотором отрезке функцию можно приблизить полиномом с любой наперёд заданной степенью точности). Оценка неизвестных коэффициентов регрессии β0, ..., βm и неизвестной дисперсии σ2 осуществляется Наименьших квадратов методом. Оценки

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое регрессионный анализ
Значение слова регрессионный анализ
Что означает регрессионный анализ
Толкование слова регрессионный анализ
Определение термина регрессионный анализ
regressionnyy analiz это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины