Химическая энциклопедия - активационный анализ
Активационный анализ
(радиоактивационный анализ), метод качественного и количественного элементного анализа в-ва, основанный на активации ядер атомов и исследовании образовавшихся радиоактивных изотопов (радионуклидов). В-во облучают ядерными частицами (тепловыми или быстрыми нейтронами, протонами, дейтронами,частицами и т. д.) или квантами. Затем определяют вид, т. е. порядковый номер и массовое число, образовавшихся радионуклидов по их периодам полураспада Т 1/2 и энергиям излучения Е, к-рые табулированы. Поскольку ядерные р-ции, приводящие к образованию тех или иных радионуклидов, обычно известны, можно установить, какие атомы были исходными.
Количеств. А. а. основан на том, что активность образовавшегося радионуклида пропорциональна числу ядер исходного изотопа, участвовавшего в ядерной р-ции. При т. наз. абсолютном анализе измеряют активность радионуклида и рассчитывают исходное содержание определяемого элемента по ф-ле:
где т-масса определяемого элемента, г; N- измеренная скорость счета, имп/с; М-атомная масса определяемого элемента; Е- полная эффективность регистрации измерит, аппаратуры (отношение числа регистрируемых импульсов к числу актов радиоактивного распада); Ф-поток частиц или квантов, облучающих образец, число частиц/см 2*с; -сечение (вероятность) ядерной р-ции, барны (10-24 см 2);
-доля исследуемого нуклида в прир. смеси; -постоянная распада (т. е. 1/Г 1/2 образующегося радионуклида, с -1); t1 -время облучения образца, с; t2 -время выдержки (время, прошедшее с момента окончания облучения до начала измерения активности образца), с.
Абс. метод характеризуется высокой погрешностью (относит. стандартное отклонение 0,4-0,6), что связано с неконтролируемыми колебаниями величины Ф, сложностью определения E, погрешностями табличных значений а и т. д. Поэтому обычно анализ выполняют относит. методом, основанным на сравнении активностей анализируемого образца и образцов сравнения с точно известным содержанием определяемых элементов. Облучение и измерение активности образцов проводят в одинаковых условиях.
Существуют два осн. варианта А. а. инструментальный и радиохимический. Первый применяют при анализе в-в, к-рые либо слабо активируются, либо образуют короткоживущие радионуклиды. Анализируемый образец и образцы сравнения одновременно получают и затем обычно неск. раз измеряют (с помощью полупроводникового спектрометра высокого разрешения) и сопоставляют их спектры. При первом измерении идентифицируют и определяют содержание элементов, образующих короткоживущие радионуклиды, при втором-элементы, образующие радионуклиды с большим Т 1/2, и т. д. Кроме того, последоват. измерение спектров позволяет идентифицировать радионуклиды не только по энергиям испускаемых квантов, но и по T1/2. Пример инструментального А. а.-нейтронноактивационное определение примесей в Nb. Невысокий уровень активности радионуклидов, образующихся при облучении нейтронами, позволяет измерять спектры уже через 5-7 ч после облучения. При первом измерении определяли радионуклиды с Т 1/2 = 2-30 ч, напр. 56Mn, 65Ni, 24Na, 64Cu, l87W, при втором (через 3-4 сут после первого)-радионуклиды с Т 1/2 от 25 сут до 5 лет, напр. 51Cr, 60 Со, 59Fe. Если в Nb содержание примесей легкоактивирующихся элементов (Си, Na, Та, W) не превышает 10-5%, удается определить 30-35 элементов с пределами обнаружения 10-5 10-9%.
Осн. достоинства инструментального варианта: быстрота проведения, сравнительно небольшая трудоемкость, высокая информативность, возможность проводить анализ без разрушения образца и использовать радионуклиды с небольшими Т 1/2 (от неск. минут до неск. секунд). Широкое использование электронно-вычислит. техники для оптимизации условий анализа и обработки спектрометрич. информации повысило точность и надежность метода и позволило создать полностью автоматизир. системы А. а. Осн. недостаток инструментального варианта: невозможность анализировать сильно активируемые в-ва, образующие долгоживущие радионуклиды.
В радиохим. варианте облученный образец растворяют, а затем отделяют от основы образовавшиеся радионуклиды определяемых элементов, обычно вместе с их изотопными носителями (неактивными изотопами), к-рые специально добавляют в р-р. Методы разделения-экстракция, хроматография, дистилляционные методы и др.; они позволяют получать препараты определяемых элементов радиохим. степени чистоты, активность к-рых можно измерять на полупроводниковом спектрометре. При доминирующем содержании одного или неск. элементов прямой гамма-спектральный анализ затруднен и необходимо эти радионуклиды разделять на группы, удобные для измерения спектров. Для достижения особенно низких пределов обнаружения выделяют индивидуальные элементы.
Наиб. распространен нейтронно-активационный анализ, в к-ром исследуемое в-во облучают потоком тепловых нейтронов с энергией 0,025 эВ, т. к. сечения ядерных р-ций (и,) в этом случае для большинства элементов на неск. порядков выше сечений др. ядерных р-ций. Поток нейтронов из ядерных реакторов достигает 1013-1015 частиц/см 2*с. Метод позволяет определять большинство элементов периодич. системы начиная с Na с пределами обнаружения 10-4 10-12%, в т. ч. 53 элемента с пределами обнаружения менее 10-6%. Однако определение с помошью активации тепловыми нейтронами легких элементов от Н до Ne, а также Mg, Al, Si, P и нек-рых др. связано со значит. трудностями из-за небольших сечений ядерных р-ций, слишком малых или слишком больших Т 1/2 образующихся радионуклидов, низких энергий испускаемого , излучения или рентгеновского излучения. В этом случае используют нейтронно-активационный анализ на быстрых нейтронах (с энергией ~ 14 МэВ). Источник последних -нейтронный генератор. Сечение ядерных р-ций на 3-4 порядка меньше, чем при активации тепловыми нейтронами. Однако быстрые нейтроны активируют легкие элементы О, N, Si, F, Al, Mg и нек-рые др., пределы обнаружения к-рых составляют 10-3 10-5%.
Предельно низкие концентрации (10-7 10-8%) О, С, N и В определяют путем активации образца ускоренными протонами или частицами. Источник излучения в этом случае-циклотрон. При использовании для активации заряженных частиц можно определять в чистых в-вах Са, Ti, V, Nb, Y с пределами обнаружения 10-5 10-7%.
Для определения газообразующих примесей (6, N, С) используют также активацию квантами (т. наз. фотонейтронный анализ). Источник последних-линейные ускорители, микротроны и бетатроны. В этом случае предел обнаружения составляет 10-5 10-6%.
Достоинства А. а.: высокая чувствительность, возможность в ряде случаев проводить определение без разрушения образца, высокая избирательность, возможность одновременного определения ряда примесей в одной навеске образца, отсутствие поправки контрольного опыта (т. к. все хим. операции, в т. ч. травление образцов для удаления поверхностных загрязнений, проводят после облучения). Кроме того, при работе с короткоживущими радионуклидами анализ м. б. выполнен быстро-в течение неск. минут. Недостатки метода: относительно малая доступность источников ядерных частиц или -квантов, возможность деструкции и даже разрушения образцов при облучении мощными потоками излучений, относит. сложность выполнения анализа, радиац. опасность.
Осн. области применения А. а.: анализ особо чистых в-в, геол. объектов и объектов окружающей среды; экспрессный анализ металлов и сплавов в пром-сти; определение содержания микроэлементов в крови, плазме, тканях животных и растений; судебно-мед. экспертиза.
А. а. впервые был проведен Д. Хевеши и Г. Леви в 1936 и А. А. Гринбергом (1940).
Лит.: Кузнецов Р. А., Актнвационный анализ, 2 изд., М., 1974; Зайцев Е. И., Сотсков Ю. ПД Резников Р. С., Нейтронно-активационный анализ горных пород на редкие элементы, М., 1978; My ми нов В. А., Мухаммедов С., Ядернофизнческие методы анализа газов в конденсированных средах, Таш., 1977; De Soete D., Gijbels R., Hoste J., Neutron activation analysis, L., 1972; Nondestructive activation analysis, ed. by S. Amiel, Amst.-[a. o.], 1981. M. Н. Щулепников.
Химическая энциклопедия. — М.: Советская энциклопедия
Под ред. И. Л. Кнунянца
1988