Химическая энциклопедия - напряжение молекул
Напряжение молекул
мера неустойчивости хим. соединения, к-рая количественно выражается его избыточной энергией по сравнению с эталонным (стандартным) соед., обладающим миним. энергией в ряду сходных в-в. Н. м. создается отклонением разл. структурных параметров от идеальных (стандартных) значений, свойственных молекуле эталонного соединения. Обычно рассматривают длины связей, валентные углы, углы внутр. вращения и расстояния между валентно не связанными атомами. В качестве эталонных выбирают молекулы, к-рые имеют длины связей, равные суммам ковалентных радиусов атомов; валентные углы, соответствующие углам между осями орбиталей при данной гибридизации атома (С sp з> 109° 28', С sр2120°, ЧС sр з> увеличена по сравнению со стандартной величиной 0,1534 нм до 0,1582 нм в гексаметилэтане, 0,1606 нм в пентафенилэтане, 0,1611 нм в три- трет -бутилметане. Очень сильное растяжение связи С=С имеет место в циклобутене (0,1566 нм).
Энергия углового напряжения обычно обеспечивает макс, вклад в Н. м. благодаря большим интервалам изменения валентных углов. Угловое напряжение наз. иногда байеров-ским по имени А. Байера, к-рый в 1885 предложил т. наз. теорию напряжения, объясняющую зависимость св-в циклов от их размера, в частности легкость разрыва малых циклов. Для насыщ. циклов энергия байеровского напряжения пропорциональна квадрату отклонения от тетраэдрич. значения внутр. угла правильного многоугольника, соответствующего плоской структуре цикла: в циклопропане отклонение 49°28' (следует, однако, учитывать твердо установленную в настоящее время изогнутость связей трехчленного цикла), в циклобутане 19°28', в циклопентане 1028'. Начиная с цикло-гексана возможно образование неплоских циклов с ненапряженными валентными углами. Этому соответствуют энергии напряжения малых циклов относительно цикло-гексана, равные в расчете на одну связь СЧС для 3-, 4и 5-членного циклов соотв. 37,7, 26,4 и 5,0 кДж/моль. В циклах больших размеров угловое напряжение проявляется при наличии тройной связи: циклоалкины с размером кольца меньше 8-членного не существуют, а в циклооктине угол С==СЧС равен 158,5° вместо нормального 180°. В аналогичных циклоалкенах двойная связь создает напряжение при E-конфигурации, так что избыточная энергия транс- циклооктена по сравнению с цис -изомером составляет 52,9 кДж/моль. Особенно велики байеровские напряжения ненасыщ. малых циклов-энергии их для циклопропена и циклобутена составляют соотв. 232 и 119 кДж/моль. Требования углового напряжения обусловливают ряд структурных запретов, в т. ч. Бредта правило.
Торсионное напряжение, обусловленное вынужденным отклонением от наиб. выгодной конформации, носит иногда назв. питцеровского, поскольку К. Питцер в 1936 впервые рассмотрел изменение энергии при внутр. вращении в этане. Особенно сильное напряжение вызывается выводом из ко-планарности заместителей при двойной связи, для к-рой барьер вращения составляет ок. 250 кДж/моль. Наглядным примером проявления торсионного напряжения является теплота гидрогенизации циклопентена в циклопентан, на 8,1 кДж/моль меньшая, чем в случае 6-членных аналогов, несмотря на большее угловое напряжение в циклопентене. Причина в том, что в почти плоской молекуле циклопентана невыгодны заслоненные конформации пяти связей СЧС.
Взаимод. между валентно не связанными атомами (не-связевое, ван-дер-ваальсово) складывается из отталкива-тельной и аттрактивной составляющих. Энергия его описывается двухчленными или более сложными ф-циями расстояний между взаимодействующими атомами (см. Межмолекулярные взаимодействия). Проявляются несвязевые взаимод., если эти расстояния существенно меньше сумм ван-дер-ваальсовых радиусов атомов. Частным случаем является т. наз. прелоговское напряжение средних циклов (по имени В. Прелога, к-рый описал его в 1950 как "неклассическое" напряжение циклов). Для циклоалканов С 8, С 9, С 10 и С 11 избыточная энергия на одну связь СЧС по отношению к циклогексану составляет соотв. 5,1; 5,9; 5,0 и 4,2 кДж/моль. В 10-членном цикле отмечается также миним. теплота гидрогенизации циклоалкена в циклоалкан. Эти факты обусловлены тем, что в наиб. устойчивых конформациях циклов средних размеров ряд атомов Н расположен внутри цикла и между ними возникают близкие контакты (0,18 нм при сумме ван-дер-ваальсовых радиусов 0,22 нм), заметно дестабилизирующие циклоалканы, особенно 9и 10-членные. Нек-рый вклад в прелоговское напряжение вносит также искажение торсионных углов.
Основные типы напряженных молекул. Нек-рые ряды соед. с явными признаками напряжения рассмотрены выше в качестве примеров для иллюстрации осн. типов взаимодействия. Однако в наиб. напряженных структурах проявляются обычно разл. виды напряжения одновременно. В малых циклах связи СЧС имеют заслоненные или близкие к ним конформации, так что торсионное напряжение накладывается на угловое. Влияние их на структуру молекулы различно. Молекула циклобутана неплоская, что увеличивает байеровское напряжение, но уменьшает торсионный вклад. То же имеет место для циклопентана.
Наиб. характерные напряженные молекулы -бии полициклические. Структуры типа бициклооктана (ф-ла I) дестабилизируются заслоненными конформациями мостиковых групп; для этого соед. энергия напряжения Е н31,1 кДж/моль. Напряжение в норборнане (II) усиливается за счет очень малого валентного угла ССС метиленового мостика (93,2°), и величина Е н по сравнению с соед. I увеличивается вдвое (60,5 кДж/моль). Еще меньше мостиковый угол в норбор-надиене (III). Соотв. удлинены связи СЧС в метиленовом мостике до 0,1560 нм в соед. II и 0,1573 нм в соед. III. По мере уменьшения длины мостиков Н. м. возрастает, достигая в бициклогексане (IV) 155 кДж/моль, а в бицикло-пентане (V) 286 кДж/моль.
Значительно усиливается Н. м. в конденсированных малых циклах. Бициклобутан (VI) имеет Е н >270 кДж/моль, бициклопентан (VII) 230 кДж/моль. Для соед. VII отмечаются макс. энергии гидрогенизации до циклопентана и изомеризации в циклопентен. Общее напряжение вызывает удлинение связи С-2ЧС-3 до 0,1622 нм.
Поскольку стандартные валентные углы олефинового атома углерода больше тетраэдрических, Н. м. возрастает в бицикленах. Напр., для изомерных бициклобутенов (VIII-XI) энергия напряжения составляет соотв. 285, 512, 504 и 529 кДж/моль. Почти таково же Н. м. в пропелланах с малыми циклами: для соед. XII-XV величины Е н находятся в интервале от 378 до 441 кДж/моль.
Еще более напряжены полиэдрич. (каркасные) молекулы-производные тетраэдрана (XVI), призмана (XVII), кубана (XVIII) и др. В них очень велики вклады растяжения связей и сжатия валентных углов, так что избыточные энергии достигают величин более 580 кДж/моль для соед. XVI и 640 кДж/моль для соед. XVIII. Частичная компенсация достигается, согласно теоретич. расчету, при концентрации электронного облака внутри мол. каркаса; стабильность таких соед. увеличивается заместителями с s-донорными и p-акцепторными св-вами, а также объемистыми радикалами. Поэтому наиб. устойчивы тетра-тирега-бутилтетра-эдран, пертрифторметилыше производные призмана и кубана.