Химическая энциклопедия - сиинтетическое жидкое топливо
Сиинтетическое жидкое топливо
(СЖТ, искусств. жидкое топливо), сложные смеси углеводородов, получаемые из сырья ненефтяного происхождения. См.. также Альтернативные топлива.
Проблема произ-ва СЖТ возникла в нач. 20 в. в связи с отсутствием во многих промышленно развитых странах или регионах значит. нефтяных месторождений, в дальнейшем-с ограниченностью запасов нефти при непрерывно растущих масштабах ее потребления. В 80-х гг. нефть обеспечивала примерно 40% топливно-энергетич. потребностей мира, прир. газ-ок. 20%, уголь-только неск. более 30%. Между тем отношение доказанных извлекаемых (т. е. с применением экономически рентабельных способов добычи) запасов горючих ископаемых к их годовой добыче составляло: для нефти 41, для газа 58, для углей 224 (1989). Общепринятой оценки мировых запасов горючих сланцев нет; принимают, что их общие потенц. запасы в 13 раз превышают потенц. запасы нефти. При сохранении добычи и потребления нефти и газа примерно на уровне 80-х гг. их извлекаемые запасы будут исчерпаны уже через 40-50 лет. По истечении этого периода придется применять гораздо более дорогие способы добычи или производить жидкое топливо из угля и сланцев, запасов к-рых хватит на столетия.
Возможные пути получения СЖТ. Для превращения в СЖТ углей или сланцев необходимо удалить из них золу, уменьшить мол. массу, превратив твердое орг. в-во в жидкое, обогатить его водородом и удалить из него кислород, азот и серу в виде Н 2 О, NH3 и Н 2 S.
Одно направление получения СЖТ-термич. переработка сырья без доступа воздуха (см., напр., Коксование, Пиролиз, Полукоксование). При этом, наряду с твердым остатком (полукоксом), образуется угольная или сланцевая смола (сложная жидкая смесь орг. соединений), уже не содержащая золы. Поскольку образование смолы происходит за счет водорода орг. массы, к-рого в сырье недостаточно, выход смолы по сравнению с выходом полукокса невелик: 10-20% от орг. массы в случае углей и 50-70% в случае сланцев (только 6-22% от их массы).
Др. направление-превращение всей орг. массы в жидкость или газ. Применительно к углям это гидрогенизация (см. Гидрогенизация угля) и газификация (см. Газификация твердых топлив). Для сланцев данное направление практически нецелесобразно, т. к. золы в них значительно больше, чем орг. в-в.
Возможны след. пути получения СЖТ (см. схему).
Пути 1 и 4 сравнительно не сложны в аппаратурном оформлении, но их перспективность ограничивается малым выходом жидких продуктов. Эти пути могут представлять интерес как вспомогательные, если находит применение осн. продукт твердый остаток (полукокс).
Пути 2 и 3 универсальны, но многостадийны и требуют сложного оборудования. Это особенно относится к пути 2-прямому ожижению (гидрогенизации) углей при высоких давлениях водорода (10-70 МПа), что определяет высокие уд. капиталовложения в сооружение соответствующих пром. установок. Однако этот путь дает наиб. выход целевых продуктов. Напр., при гидрогенизации кам. и бурого углей получают (в расчете на орг. массу твердого сырья) 53-65 и 53% жидких продуктов против соотв. 9-10 и 18-20% в случае термич. переработки (путь 1). По сравнению с газификацией и послед. синтезом моторных топлив из синтез-газа (путь 3) гидрогенизация энергетически выгоднее, поскольку большая доля теплосодержания сырья переходит в целевой продукт: 58 и 52% вместо 44-52 и 45-50% в случае соотв. кам. и бурого углей.
Все рассмотренные возможные пути получения СЖТ в разные периоды развития разл. стран были реализованы в пром-сти.
Термическая переработка углей продолжит. время развивалась гл. обр. с целью произ-ва металлургич. кокса. Получаемую при этом в качестве побочного продукта высокотемпературную коксовую (напр., кам.-уг.) смолу применяли как сырье для хим. пром-сти, в стр-ве и только в небольших опытных масштабах в Великобритании (40-50-е гг.)-для выработки моторных топлив, что определяется трудностью гидрогенизации высокоароматизир. коксовой смолы. Переработка углей при пониженных (полукоксование) по сравнению с коксованием т-рах дает более высокий выход смолы, наз. первичной или полукоксовой. При получении моторных топлив последняя гораздо более пригодна как сырье, чем коксовая смола, для гидрооблагораживания (обработка водородом для удаления гетероатомов, а также увеличения соотношения Н/С с целью приближения состава СЖТ к составу топлив нефтяного происхождения).
Произ-во СЖТ по пути 1 с использованием полукокса для газификации и послед. получения водорода было осуществлено в пром. масштабе в предвоенной Германии, а также в СССР. В Германии в 30-е гг. и во время войны произ-во СЖТ субсидировалось для покрытия нужд армии (ряд предприятий перерабатывал более 1 млн. т/год полукоксовых смол).
В послевоенные годы конкуренция более дешевого нефтяного сырья привела к прекращению выработки СЖТ из смол, а рост добычи прир. газа резко сократил потребность в полукоксе как сырье для газификации. В 80-е гг. полукоксование углей и переработка смол сохранялись в мире лишь на единичных заводах (Мост, Чехословакия; Цейц, ГДР; Ангарск, СССР), причем из смол все более стремятся вырабатывать не СЖТ, а хим. продукты. Однако в опытно-пром. масштабах изучение разл. вариантов получения СЖТ с включением разных термич. процессов продолжается. Напр., в США в 70-е гг. на установках производительностью 3,6-300 т/сут углей были исследованы скоростной пиролиз и гидрогенизация смолы, гидропиролиз в псевдоожиженном слое, полукоксование во вращающихся ретортах с теплоносителями (фарфоровыми шарами), ступенчатое полукоксование с повышаемой от реактора к реактору т-рой (полукокс использован для произ-ва водорода, а последний-для гидрогенизации смолы). В бывшем СССР изучены (также на опытных установках) скоростной пиролиз, гидропиролиз и термоконтактное коксование углей с послед. переработкой смол в СЖТ.
Термическая переработка сланцев. Первый патент на такую переработку был выдан в Англии (1694). В 1-й пол. 19 в. на сланцеперегонных заводах Великобритании, США, Австралии, Франции и Швеции вырабатывали ламповый (осветительный) керосин. Развитие добычи и переработки нефти сделало эти произ-ва нерентабельными, и после 2-й мировой войны предприятия в перечисл. странах были закрыты. Однако в России и КНР полукоксование сохраняется; в последние десятилетия небольшие предприятия начали функционировать вновь в США, а также пущены в Бразилии.
Масштабы переработки сланцев ничтожны в сравнении с добычей и использованием нефти. Наиб. развита переработка сланцев в России и Эстонии, где их добыча составляет ок. 40 млн. т/год; при этом б. ч. сланцев используют как энергетич. топливо, а 1/5 часть подвергают полукоксованию с выработкой 1,2-1,3 млн. т/год смолы. Ее переработка ориентирована на получение не только СЖТ, но и большой гаммы хим. продуктов: электродного кокса, масла для пропитки древесины, мягчителей резины, строит. мастик и др. В России освоены мощные генераторы с газовым теплоносителем производительностью по кусковому сланцу 1000 т/сут; проходит испытания установка полукоксования сланцевой мелочи с твердым теплоносителем (сланцевой золой) производительностью 3000 т/сут. В США (штат Колорадо) опытное предприятие мощностью 10 тыс. баррелей в день (0,5 млн. т/год) сланцевой смолы работало в 80-е гг. с перебоями; в Бразилии аналогичное предприятие имеет мощность по сланцам ок. 0,8 млн. т/год.
Прямое ожижение (гидрогенизация) углей. Этот процесс привлекал и продолжает привлекать своей универсальностью наиб. внимание исследователей. В 20-е и в нач. 30-х гг. на основе исследований В. Н. Ипатьева, Ф. Бергиуса (F, Bergius) и др. были выполнены многочисл. работы по гидрогенизации углей в Германии, СССР, Великобритании, Японии и иных странах, подготовившие пром. реализацию гидрогенизации.
Первая крупная установка для получения бензина из бурого угля (100 тыс. т/год по бензину) была введена в Германии (1927). В 30-40-х гг. крупные установки работали также в Великобритании, СССР и северной части Кореи. Наиб. развитие гидрогенизация получила в Германии, где были сооружены шесть заводов общей мощностью 2,5 млн. т/год.
Важнейшее технол. достижение этого периода, определившее в значит. степени возможность пром. реализации гидрогенизации,-разделение превращения углей в жидкие углеводороды на отдельные стадии, поскольку одностадий-ность требовала большого расхода водорода и применения дорогих катализаторов. На первой стадии паста из тонкоизмельченного угля и масла, циркулирующего в системе вместе с дешевым железным катализатором (красный шлам), к-рый выводился из цикла с золой, превращалась при 30-70 МПа и 450-480 °С в смесь газообразных, легких и тяжелых жидких продуктов, содержавшую также твердую фазу. Твердые компоненты (непревращенный уголь, зола и катализатор) отделялись центрифугированием, фракции, выкипающие при т-ре выше 325 °С, после разделения возвращались в цикл для приготовления пасты.
Продукт первой стадии-т. наз. широкая фракция с концом кипения 325 °С, содержавшая значит. кол-во неуглеводородных соед., в т. ч..склонных к р-циям конденсации. Эту фракцию на второй стадии рафинировали, т. е. насыщали водородом под давлением 30 МПа и при 4(00-420 °С в присутствии спец. активных гетерог. катализаторов, так что кислород, азот и сера удалялись соотв. в виде Н 2 О, NH3 и Н 2 S. Полученный продукт, состоявший практически целиком из углеводородов, подвергался также при высоком давлении на третьей стадии гидрокрекингу с циркуляцией фракций, выкипающих при т-ре выше т-ры кипения бензина.
Вынужденные многоступенчатость процесса и использование на первой стадии железного катализатора, низкая активность к-рого также вынужденно компенсировалась высоким давлением, определили низкую производительность дорогостоящего оборудования и экономич. неэффективность гидрогенизации. Это делало произ-во СЖТ путем ожижения углей неконкурентоспособным по сравнению с произ-вом моторных топлив из нефти. Поэтому после 2-й мировой войны выпуск искусств. топлива, оказавшегося в неск. раз дороже продуктов из нефти (добыча к-рой в этот период стала возрастать), быстро прекратился.
Повышение цен на нефть (с 1973) привело к возобновлению интереса к СЖТ. В этот период в большинстве технически развитых стран создаются соответствующие национальные программы исследований. В-результате к нач. 80-х гг. была разработано неск. вариантов усовершенств. технологии ожижения углей, проведенных на крупных опытно-пром. установках производительностью по сырью от 3 до 600 т/сут. В табл. приведена сводка нек-рых процессов, наиб. отработанных в пром-сти или на крупных опытных установках.
Сравнение процессов, разработанных в 70-80-е гг., с процессом I.G. Farbenindustrie показывает, что, несмотря на большую разницу, вносимую использованием углей разл. типов, техн.-экономич. показатели улучшаются благодаря существ. снижению расхода водорода и кол-в образующихся газов C1 -С 4. Увеличенное кол-во твердого остатка не вызывает затруднений, поскольку его можно газифицировать с целью получения водорода или сжигать для покрытия энергетич. нужд.