Философская энциклопедия - исчисление
Исчисление
ИСЧИСЛЕНИЕ
(формальная система) — система символов, основными компонентами которой являются: 1) алфавит (совокупность элементарных символов — букв. цифр, скобок и т.п.), 2) правила построения формул из символов алфавита, 3) аксиомы (исходные доказуемые формулы), 4) правила вывода теорем (производных доказуемых формул) из аксиом.
Символам формальной системы может придаваться различная смысловая интерпретация в зависимости от того, какая конкретная семантическая модель ставится в соответствие всей формальной системе в целом. В результате такой интерпретации И. преобразуется в формальный язык. Напр., язык логики высказываний и язык логики предикатов являются интерпретированными логическими И.; язык арифметики — интерпретированным логико-математическим И.; язык теории множеств — интерпретированным теоретико-множественным И., и т.д. Логические И. являются важнейшей разновидностью формальных систем. От др. формальных систем такие И. отличаются сугубо логическим пониманием формул и правил вывода. Формулы, содержащие неквалифицированные переменные, рассматриваются в качестве пропозициональных переменных, вместо которых допускается подстановка соответствующих высказываний, а правила вывода задаются с таким расчетом, чтобы они отражали отношение логического следования между формулами. Наиболее значимыми являются классическое И. высказываний и классическое И. предикатов. На основе собственно логических И. строятся различные прикладные И. путем присоединения к логическим аксиомам тех или иных дополнительных аксиом.
Прикладным логическим И. является, в частности, И. предикатов с равенством, получающееся в результате добавления к классическому И. предикатов дополнительных аксиом, характеризующих отношение математического равенства.Философия: Энциклопедический словарь. — М.: Гардарики. Под редакцией А.А. Ивина. 2004.
.