Энциклопедия Кольера - архимед
Архимед
(ок. 287-212 до н.э.), величайший древнегреческий математик и механик.
. Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную. В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь.
В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил.
Все доказательство от начала и до конца пронизано идеей геометрической симметрии. В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух исходных допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело.
В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость. В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.
>>>>">, где само Р равно . Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную. В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь.
В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил.
Все доказательство от начала и до конца пронизано идеей геометрической симметрии. В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух исходных допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело.
В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость. В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.
>>>">. В сочинении, известном под названием Исчисление песчинок, Архимед излагает оригинальную систему представления больших чисел, позволившую ему записать число , где само Р равно . Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную.В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь. В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике.
В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил. Все доказательство от начала и до конца пронизано идеей геометрической симметрии.
В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух исходных допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело.
В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость. В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.
>>">
, а именно: . В сочинении, известном под названием Исчисление песчинок, Архимед излагает оригинальную систему представления больших чисел, позволившую ему записать число , где само Р равно . Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную. В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь. В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага.
По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил. Все доказательство от начала и до конца пронизано идеей геометрической симметрии. В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики.
Исходя из двух исходных допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело. В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость.
В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.>">
. Из доказательства видно, что он располагал алгоритмом получения приближенных значений квадратных корней из больших чисел. Интересно отметить, что у него приведена и приближенная оценка числа , а именно: . В сочинении, известном под названием Исчисление песчинок, Архимед излагает оригинальную систему представления больших чисел, позволившую ему записать число , где само Р равно .Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную. В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь.
В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил.
Все доказательство от начала и до конца пронизано идеей геометрической симметрии. В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух исходных допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело.
В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость. В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.
">
и больше . Из доказательства видно, что он располагал алгоритмом получения приближенных значений квадратных корней из больших чисел. Интересно отметить, что у него приведена и приближенная оценка числа , а именно: . В сочинении, известном под названием Исчисление песчинок, Архимед излагает оригинальную систему представления больших чисел, позволившую ему записать число , где само Р равно .Эта система потребовалась ему, чтобы сосчитать, сколько песчинок понадобилось бы, чтобы заполнить Вселенную. В труде О спирали Архимед исследовал свойства т.н. архимедовой спирали, записал в полярных координатах характеристическое свойство точек спирали, дал построение касательной к этой спирали, а также определил ее площадь.
В истории физики Архимед известен как один из основоположников успешного применения геометрии к статике и гидростатике. В I книге сочинения О равновесии плоских фигур он приводит чисто геометрический вывод закона рычага. По сути, его доказательство основано на сведении общего случая рычага с плечами, обратно пропорциональными приложенным к ним силам, к частному случаю равноплечего рычага и равных сил.
Все доказательство от начала и до конца пронизано идеей геометрической симметрии. В своем сочинении О плавающих телах Архимед применяет аналогичный метод к решению задач гидростатики. Исходя из двух исходных допущений, сформулированных на геометрическом языке, Архимед доказывает теоремы (предложения) относительно величины погруженной части тел и веса тел в жидкости как с большей, так и с меньшей плотностью, чем само тело.
В предложении VII, где говорится о телах более плотных, чем жидкость, выражен т.н. закон Архимеда, согласно которому "всякое тело, погруженное в жидкость, теряет по сравнению со своим весом в воздухе столько, сколько весит вытесненная им жидкость". В книге II содержатся тонкие соображения относительно устойчивости плавающих сегментов параболоида.
Влияние Архимеда. В отличие от Эвклида, Архимеда вспоминали в античности лишь от случая к случаю. Если мы что-то знаем о его работах, то лишь благодаря тому интересу, который питали к ним в Константинополе в 6-9 в. Эвтокий, математик, родившийся в конце 5 в., прокомментировал по крайней мере три работы Архимеда, по-видимому, наиболее известные в то время: О шаре и цилиндре, Об измерении круга и О равновесии плоских фигур. Работы Архимеда и комментарии Эвтокия изучали и преподавали математики Анфимий из Тралл и Исидор из Милета, архитекторы собора св. Софии, возведенного в Константинополе в правление императора Юстиниана. Реформа преподавания математики, которую проводил в Константинополе в 9 в. Лев Фессалоникийский, по-видимому, способствовала собиранию работ Архимеда. Тогда же он стал известен мусульманским математикам. Теперь мы видим, что арабским авторам недоставало некоторых наиболее важных работ Архимеда, таких как О квадратуре параболы, О спиралях, О коноидах и сфероидах, Исчисление песчинок и О методе.Но в целом арабы овладели методами, изложенными в других работах Архимеда, и нередко блестяще ими пользовались. Средневековые латиноязычные ученые впервые услышали об Архимеде в 12 в., когда появились два перевода с арабского на латынь его сочинения Об измерении круга. Лучший перевод принадлежал знаменитому переводчику Герарду Кремонскому, и в последующие три столетия он послужил основой многих изложений и расширенных версий.
Герарду принадлежал также перевод трактата Слова сынов Моисеевых арабского математика 9 в. Бану Мусы, в котором приводились теоремы из сочинения Архимеда О шаре и цилиндре с доказательством, аналогичным приведенному у Архимеда. В начале 13 в. Иоанн де Тинемюэ перевел сочинение О криволинейных поверхностях, по которому видно, что автор был знаком с другой работой Архимеда О шаре и цилиндре. В 1269 доминиканец Вильгельм из Мербеке перевел с древнегреческого весь корпус работ Архимеда, кроме Исчисления песчинок, Метода и небольших сочинений Задача о быках и Стомахион. Для перевода Вильгельм из Мербеке использовал две из трех известных нам византийских рукописей (рукописи А и В). Мы можем проследить историю всех трех. Первая из них (рукопись А), источник всех копий, снятых в эпоху Возрождения, по-видимому, была утрачена примерно в 1544. Вторая рукопись (рукопись В), содержавшая работы Архимеда по механике, в том числе сочинение О плавающих телах, исчезла в 14 в.Копий с нее снято не было. Третья рукопись (рукопись С) не была известна до 1899, а изучать ее стали лишь с 1906. Именно рукопись С стала драгоценной находкой, так как содержала великолепное сочинение О методе, известное ранее лишь по отрывочным фрагментам, и древнегреческий текст О плавающих телах, исчезнувший после утраты в 14 в. рукописи В, которую использовал при переводе на латынь Вильгельм из Мербеке.
Этот перевод имел хождение в 14 в. в Париже. Он использовался также Якобом Кремонским, когда в середине 15 в. тот предпринял новый перевод корпуса сочинений Архимеда, входивших в рукопись А (т.е. за исключением сочинения О плавающих телах). Именно этот перевод, несколько поправленный Региомонтаном, был опубликован в 1644 в первом греческом издании трудов Архимеда, хотя некоторые переводы Вильгельма из Мербеке были изданы в 1501 и 1543.
После 1544 известность Архимеда начала возрастать, и его методы оказали значительное влияние на таких ученых, как Симон Стевин и Галилей, а тем самым, хотя и косвенно, воздействовали на формирование современной механики.ЛИТЕРАТУРА
Лурье С.Я. Архимед. М. Л., 1951 .