Энциклопедия Брокгауза и Ефрона - колебательные движения
Колебательные движения
Самый простой случай К. движений уже рассмотрен в статье Гармоническое движение. Такое движение обуславливается переменной силой, во всякий момент направленной противоположно отклонению колеблющейся точки u, пропорциональной величине отклонений. Перемещение колеблющейся точки, в самом простом случае, выражается уравнением: x = αsin2πt/T, где α размах или амплитуда колебания, T — период одного колебания, t время, считаемое от момента прохождения точки чрез среднее свое положение и угол 2πt/T — фаза колебания. Фаза определяет место точки в пути и считается от 0 до 2π. Кинетическая энергия колеблющейся частицы (масса m), выражаемая, обыкновенно, через 1/2mv2 (живая сила), меняется в течение 1/2 периода от нуля до некоторого максимума. Поэтому средняя величина энергии для времени 1/2 периода выражается через π2ma2/T2. Все возможные типы колебаний могут быть приведены к простому колебанию — гармоническому. Фурье доказал особой теоремой, что всякое периодическое или К. движение с периодом T можно составить через сложение простых — с периодом T, 1/2T, 1/3T, и т.д. и притом составить только одним способом (т. е. с вполне определенными амплитудами и фазами). Иначе говоря, всякое К. движение с периодом Т разлагается на простые гармонические, причем период основного есть Т. Два простых колебания одного периода, следующие по одной и той же прямой, складываются — усиливая или ослабляя друг друга и даже уничтожая (если амплитуды равны, а фазы противоположны, т. е. разнятся на π). Такое явление называется интерференцией колебаний (см. Интерференция). Два колебания одинакового периода, направленные по взаимно перпендикулярным прямым, смотря по амплитудам и разности фаз, складываются или в движение по эллипсу (эллиптическое колебание), или по кругу (круговое колебание), или по прямой. Два колебания различных периодов по взаимно перпендикулярным линиям, в зависимости от амплитуд и разности фаз, складываются в траектории сложных форм, известных под общим именем фигур Лиссажу. Ряд точек, последовательно приходящих в К. движение, называется лучом. Передача колебаний от точки к точке — совершается с определенной скоростью, которая поэтому называется скоростью распространения колебаний. Расстояние между двумя ближайшими точками луча, находящимися в одинаковых фазах колебания, называется длиной волны (λ). Если в ряде точек в некоторый момент (t) перемещение одной точки ряда: x = аsin2πt/T, то перемещение всякой другой, находящейся в ряде на расстоянии y от первой, выразится уравнением x = asin2π(t/Т-у/λ). Такое уравнение называется уравнением луча и y называется разностью хода двух колеблющихся точек. Она соответствует разности фаз 2πy/λ (см. Волны, Дифракция, Интерференция).
Подробнее о К. движении см. Thomson u. Tait, "Theoretische Physik übersetzt v. Helmholtz und Wertheim" (p. 57); Хвольсон, "Учение о движении и силах (1893, стр. 58); Столетов, "Введение в акустику и оптику" (M., 1895). См. еще Колебания звучащих тел.
Н. Егоров.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон
1890—1907