Поиск в словарях
Искать во всех

Энциклопедия Брокгауза и Ефрона - многообразие (мат.)

Многообразие (мат.)

Уравнение между двумя координатами, х, у, имеющее вид f(x, у) = 0, определяет линию, которая, как известно, имеет одно измерение. Уравнение f(x, y, z) = 0 между тремя координатами определяет поверхность, имеющую два измерения. Обобщая такого рода представления, говорят, что уравнение f(x1, x2, x3,..., х n, х n+1) = 0 между n + 1 координатами представляет М п-ого измерения.

Н. Д.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон

1890—1907

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое многообразие (мат.)
Значение слова многообразие (мат.)
Что означает многообразие (мат.)
Толкование слова многообразие (мат.)
Определение термина многообразие (мат.)
mnogoobrazie (mat.) это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины