Большая Советская энциклопедия - эллиптические функции
Связанные словари
Эллиптические функции
функции, связанные с обращением эллиптических интегралов (См. Эллиптические интегралы). Э. ф. применяются во многих разделах математики и механики как при теоретических исследованиях, так и для численных расчётов.
Подобно тому как тригонометрическая функция u = sinx является обратной по отношению к интегралу
так обращение нормальных эллиптических интегралов 1-го рода
где z = sin φω, k — модуль эллиптического интеграла, порождает функции: φ = am z — амплитуда z (эта функция не является Э. ф.) и ω = sn z = sin (am z) — синус амплитуды. Функции cn — косинус амплитуды и dn z — дельта амплитуды определяются формулами
Функции sn z, cn z, dn z называют Э. ф. Якоби. Они связаны соотношением
sn2z + cn2z = k2sn2z + dn2z = 1.
На рис. представлен вид графиков Э. ф. Якоби. Они связаны соотношением
sn2z + cn2z = k2sn2z + dn2z = 1
На рис. представлен вид графиков Э. ф. Якоби для действительного x и 0 < k < 1; а
— полный нормальный эллиптический интеграл 1-го рода и 4K — основной период Э. ф. sn z. В отличие от однопериодической функции sin х, функция sn z — двоякопериодическая. Её второй основной период равен 2iK, где
и — дополнительный модуль. Периоды, нули и полюсы Э. ф. Якоби приведены в таблице, где m и n — любые целые числа. ------------------------------------------------------------------------------------------------------------------------------------------------------------------
| Функции | Периоды | Нули | Полюсы |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sn z | 4Km + 2iK'n | 2mK + 2iK'n | |
|-----------------------------------------------------------------------------------------------------------------------| }2mK + (2n + 1) iK' |
| cn z | 4K + (2K + 2iK') n | (2m + 1) K + 2iK'n | |
|-----------------------------------------------------------------------------------------------------------------------| |
| dn z | 2Km + 4iK'n | (2m + 1) K + (2n + 1) iK | |
-----------------------------------------------------------------------------------------------------------------------------------------------------------------Э. ф. Вейерштрасса ℙ(х) может быть определена как обратная нормальному эллиптическому интегралу Вейерштрасса 1-го рода
где параметры g2 и g2 — называются инвариантами ℙ(x). При этом предполагается, что нули e1, e2 и e3 многочлена 4t3 — g2t — g3 различны между собой (в противном случае интеграл (*) выражался бы через элементарные функции). Э. ф. Вейерштрасса ℙ(х) связана с Э. ф. Якоби следующими соотношениями: