Поиск в словарях
Искать во всех

Химическая энциклопедия - неравновесная химическая кинетика

 

Неравновесная химическая кинетика

изучает кинетич. закономерности хим. р-ций при сильном нарушении термодинамич. равновесия в реагирующей системе или физ.-хим. среде, в к-рой они протекают. Любая хим. р-ция нарушает термодинамич. равновесие в системе, но во мн. случаях это нарушение мало, и если нет внеш. источников возмущения состояния системы, то при кинетич. расчетах неравновесностью либо пренебрегают, либо учитывают как второстепенный фактор, вводя малые поправки к константам скорости р-ций. В таких случаях говорят о р а в н о в е с н о й к и н е т и к е (условно, поскольку хим. состав системы должен быть неравновесным, иначе скорости всех р-ций были бы равны нулю). Константы скорости в равновесной кинетике выражаются в виде ф-ций от термодинамич. параметров среды, напр. т-ры и давления.

В условиях термодинамич. равновесия относит. заселенность i-го энергетич. уровня (N-полное число молекул, число молекул на энергетич. уровне числа возможных квантовых состояний молекулы на уровнях с энергиями Е i и Е l соотв. (суммирование проводится по индексу l). Если оператор энергии (гамильтониан) системы допускает разделение переменных, то энергию Е i можно выразить в виде суммы энергий независимых или слабо связанных подсистем. В газах Е i можно представить в виде суммы энергий поступат. и вращат. движений молекул, внутримол. колебаний и электронного возбуждения, причем каждый вид энергии описывается своей ф-цией распределения типа ф-лы Больцмана.

При отклонении от равновесия все или нек-рые из распределений частиц по энергиям типа больцмановского не реализуются. Это может приводить к качеств. и количеств. изменениям кинетики р-ций. Не существует признаков, позволяющих разделить хим. кинетику на неравновесную и равновесную. Строго судить об этом нельзя ни по величине относит. отклонения заселенности конкретных энергетич. уровней от равновесной заселенности ни по числу таких уровней, ни по отличию константы скорости р-ции от ее равновесного значения и т. п. В общем случае можно говорить только об условных границах в зависимости от требуемой точности решения конкретной кинетич. задачи. Однако по мере удаления от таких "размытых" границ признаки неравновесных хим. р-ций становятся все более определенными и м. б. установлены на основе общих качеств. сопоставлений характерных времен релаксационных процессов в газах и конденсир. средах (т. е. по иерархии времен релаксации). Система, выведенная из состояния тер-модинамич. равновесия, возвращается к нему (релаксирует) в результате обмена энергией при столкновениях частиц неравномерно, с перераспределением по типам движений (степеням свободы молекулы). В газах равновесие м. б. достигнуто быстрее всего для поступат. движения частиц, имеющих одинаковые (или близкие по величине) массы. Колебат. движение, как правило, не обменивается энергией с поступат. движением в процессе столкновения. Молекула может претерпеть значит. число столкновений, прежде чем она приобретет или потеряет квант колебат. энергии. Обычно в системе сначала устанавливается общее равновесие поступат. и вращат. движений. Колебат. релаксация, ведущая к равновесию колебаний молекул с их поступат. и вращат. движениями, требует значительно большего времени.

Если в газовой смеси имеются частицы, на порядки величин различающиеся по массам, время установления поступат. равновесия для смеси в целом гораздо больше, чем для отдельных компонент осн. состава (но не малых примесей). В ионизир. газе вследствие огромного различия масс электронов и атомов задолго до завершения поступат. релаксации устанавливаются равновесия отдельно в подсистемах "тяжелых" частиц (атомов и ионов) и электронов с двумя в общем случае разными т-рами, соотв. Т a пост и Т эл пост. В процессе колебат. релаксации до его завершения в зависимости от состава смеси и типа колебаний могут устанавливаться равновесия по отдельным группам колебат. степеней свободы (колебат. подсистемам), каждое со своей т-рой Т кол, и между такими группами.

Таким же соотношением (иерархией) времен релаксации характеризуются мол. жидкости и мол. кристаллы, с тем, однако, отличием, что в жидкостях поступат. и вращат. движения молекул составляют обычно единое целое (энергии этих видов движения можно разделить лишь в очень грубом приближении). В твердых телах все движения атомов и молекул колебательные.

Равновесие по хим. составу, к к-рому приводят хим. р-ции, как правило, достигается за времена, значительно большие по сравнению со временем колебат. релаксации. Однако при достаточно высоких т-рах константы скорости р-ций сильно возрастают как по абс. величине (см. Аррениуса уравнение), так и в сравнении с временами др. релаксационных процессов, и в системе создаются условия, при к-рых возмущения, вызываемые хим. р-цией, релаксировать не успевают. Это относится в особенности к релаксации тех энергетич. состояний, от заселенности к-рых зависит скорость р-ции. В результате скорость р-ции становится зависящей от времен колебат. релаксации, а иногда, в предельных случаях сильной неравновесности, и от времен вращат. и поступат. релаксаций. Иными словами, устанавливается отрицат. обратная связь между скоростью р-ции и теми возмущениями, к-рые она вызывает, что можно рассматривать как одно из проявлений Ле Шателье Брауна принципа. Зависимость скорости р-ции от Т пост становится при этом более слабой. Так, в сильных ударных волнах константа диссоциации при высоких Т пост (в условиях kTnocт>= D/17, где D- энергия диссоциации) обычно выражается соотношением

где показатель степени ппринимает значения от 1 до 4, A-эмпирич. постоянная.

Количеств. соотношения Н. х. к., как правило, значительно сложнее, чем равновесной. Кроме кинетич. ур-ний для концентраций реагирующих в-в и продуктов приходится иметь дело и с ур-ниями, выражающими временные зависимости для заселенностей возбужденных состояний частиц. Такие системы ур-ний, в принципе, можно решать на ЭВМ, если имеются данные о константах скорости элементарных процессов мол. переноса энергии колебательно-вращательного, колебательно-поступательного (колебательно-трансляционного) и вращательно-трансляционного. В сильно неравновесных условиях решение задач Н. х. к. обеспечивается не столько возможностью решения полной системы ур-ний для заселенностей всех энергетич. состояний частиц, сколько правильным выделением "узкого места" в совокупности элементарных актов, из к-рых слагается хим. превращение. Для этого нужно определить наиб. быстрые параллельные и наиб. медленные последовательные переходы и вычислить (или измерить) их константы скорости величины, обратные временам жизни молекул в соответствующих возбужденных состояниях.

Вычисление констант скорости хим. р-ций упрощается, если в неравновесной в целом системе можно выделить равновесные подсистемы. Константы скорости р-ций в таких случаях выражаются как ф-ции т-р подсистем. Напр., константа скорости диссоциации к AB дисс двухатомного газа АВ при высоких T пост приближенно представляется в виде ф-лы типа (1), но в экспоненциальный множитель вместо Т пост входит Т кол, а предэкспоненциальный множитель слабо зависит от т-ры. Т. к. движение атомов в молекуле носит в осн. колебат. характер, а кинетика многих хим. превращений связана именно с внутримол. перемещениями атомов, т-ра Т колважнейшая кинетич. и энергетич. характеристика состояния газа в условиях, описываемых Н. х. к. Для молекул, состоящих из неск. атомов, константа скорости мономол. распада м. б. при низких давлениях экспоненц. ф-цией Т пост и T кол, общей для всех колебаний (иногда отдельно рассматриваются Т кол для низкои высокочастотных колебаний).

В случае р-ций с участием электронов (ионизация А + е А + + 2е, диссоциативная рекомбинация АВ + + е А + В и др.) обычно сравнительно быстро устанавливаются электронное равновесие, характеризующееся т-рой Т эл пост, и поступат. равновесие, характеризующееся т-рой Т а пост. Константа скорости ионизации атома А с точностью до слабо меняющегося предэкспоненциального множителя пропорциональна exp(-I/kT эл пост), где I-потенциал ионизации. Связь между Т кол и Т пост (или Т эл пост и Т а пост) определяется ур-нием баланса энергии каждой из подсистем, в к-ром учитывается их взаимод. и вклад подсистемы в энергетику р-ций. Электроны обмениваются энергией с колебаниями эффективнее, чем с поступат. и вращат. движениями, поэтому до установления полного равновесия в системе может наступить равновесие между электронной и колебат. подсистемами, выражающееся в равенстве Т кол = Т эл пост. Определяя Т эл пост, напр. по данным о свечении газа, можно косвенно оценить Т кол.

Равновесное распределение колебат. энергии в двухатомном газе (молекулы АВ) при Т кол Т пост осуществляется путем быстрого (почти резонансного) обмена колебат. квантами по схеме: АВ n + АВ mABnb1 + АВ тb1 (индексами обозначены номера колебат. уровней). При таком обмене сохраняется общее число колебат. квантов, поэтому равновесие, к к-рому обмен приводит, характеризуется не только т-рой Т пост, но и хим. потенциалом mw0 (1 Т пост/Т кол), где w0 = E1 E0(w0основная частота колебаний). Для колебат. уровней с энергиями меньшими нек-рого значения (номер уровня ii*), обмен энергии внутри колебат. подсистемы происходит быстрее, чем между колебаниями и поступат. движением молекул. Заселенности

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое неравновесная химическая кинетика
Значение слова неравновесная химическая кинетика
Что означает неравновесная химическая кинетика
Толкование слова неравновесная химическая кинетика
Определение термина неравновесная химическая кинетика
neravnovesnaya himicheskaya kinetika это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):