Поиск в словарях
Искать во всех

Химическая энциклопедия - периодическая система химических элементов

 

Периодическая система химических элементов

упорядоченное множество хим. элементов, их естеств. классификация, являющаяся табличным выражением периодического закона Менделеева. Прообразом пе-риодич. системы хим. элементов (П. с.) послужила таблица "Опыт системы элементов, основанной на их атомном весе и химическом сходстве", составленная Д. И. Менделеевым 1 марта 1869 (рис. 1). В послед. годы ученый совершенствовал таблицу, развил представления о периодах и группах элементов и о месте элемента в системе. В 1870 Менделеев назвал систему естественной, а в 1871 периодической. В результате уже тогда П. с. во многом приобрела совр. структурные очертания. Опираясь на нее, Менделеев предсказал существование и св-ва ок. 10 неизвестных элементов; эти прогнозы впоследствии подтвердились.

Рис. 1 Таблица "Опыт системы элементов, основанной на их атомном весе и химическом сходстве" (Д. И. Менделеев. I мирта 1869).

Однако на протяжении последующих более 40 лет П. с. в значит. степени представляла собой лишь эмпирич. обобщение фактов, поскольку отсутствовало физ. объяснение причин периодич. изменения CB-B элементов в зависимости от возрастания их атомной массы. Такое объяснение было невозможно без обоснованных представлений о строении атома (см. Атом). Поэтому важнейшей вехой в развитии П. с. стала планетарная (ядерная) модель атома, предложенная Э. Резерфордом (1911). В 1913 А. ван ден Брук пришел к выводу, что порядковый номер элемента в П. с. численно равен положит. заряду (Z) ядра его атома. Этот вывод был экспериментально подтвержден Г. Мозли (закон Мозли, 1913-14). В результате периодич. закон получил строгую физ. формулировку, удалось однозначно определить ниж. границу П. с. (H как элемент с миним. Z=1), оценить точное число элементов между H и U и установить, какие элементы еще не открыты (Z = 43, 61, 72, 75, 85, 87). Теория П. с. была разработана в нач. 1920-х гг. (см. ниже).

Структура П. с. Современная П. с. включает 109 хим элементов (имеются сведения о синтезе в 1988 элемента с Z=110). Из них в прир. объектах обнаружены 89; все элементы, следующие за U, или трансурановые элементы (Z = 93 109), а также Tc (Z = 43), Pm (Z = 61) и At (Z = 85) были искусственно синтезированы с помощью разл. ядерных реакций. Элементы с Z= 106 109 пока не получили названий, поэтому соответствующие им символы в таблицах отсутствуют; для элемента с Z = 109 еще неизвестны массовые числа наиб. долгоживущих изотопов.

За всю историю П. с. было опубликовано более 500 разл вариантов ее изображения. Это обусловливалось попытками отыскать рациональное решение нек-рых спорных проблем структуры П. с. (размещение H, благородных газов, ланта-ноидов и трансурановых элементов и т. п.). Наиб. распространение получили след. табличные формы выражения П. с.: 1) короткая предложена Менделеевым (в совр. виде помещена в начале тома на цветном форзаце); 2) длинная разрабатывалась Менделеевым, усовершенствована в 1905 А. Вернером (рис.2); 3) лестничная опубликована в 1921 H. Бором (рис. 3). В последние десятилетия особенно широко используются короткая и длинная формы, как наглядные и практически удобные. Все перечисл. формы имеют определенные достоинства и недостатки. Однако едва ли можно предложить к.-л. универс. вариант изображения П. с., к-рый адекватно отразил бы все многообразие св-в хим. элементов и специфику изменения их хим. поведения по мере возрастания Z.

Фундам. принцип построения П. с. заключается в выделении в ней периодов (горизонтальные ряды) и групп (вертикальные столбцы) элементов. Современная П. с. состоит из 7 периодов (седьмой, пока не завершенный, должен заканчиваться гипотетич. элементом с Z= 118) и 8 групп Периодом наз. совокупность элементов, начинающаяся щелочным металлом (или водородом первый период) и заканчивающаяся благородным газом. Числа элементов в периодах закономерно возрастают и, начиная со второго, попарно повторяются: 8, 8, 18, 18, 32, 32, ... (особый случай первый период, содержащий всего два элемента). Группа элементов не имеет четкой дефиниции; формально ее номер соответствует макс. значению степени окисления составляющих ее элементов, но это условие в ряде случаев не выполняется. Каждая группа подразделяется на главную (а)и побочную (б)подгруппы; в каждой из них содержатся элементы, сходные по хим. св-вам, атомы к-рых характеризуются одинаковым строением внеш. электронных оболочек. В большинстве групп элементы подгрупп аи б обнаруживают определенное хим. сходство, преим. в высших степенях окисления.

Особое место в структуре П. с. занимает группа VIII. На протяжении длит. времени к ней относили только элементы "триад": Fe-Co-Ni и платиновые металлы (Ru Rh Pd и Os-Ir-Pt), а все благородные газы располагали в самостоят. нулевой группе; следовательно, П. с. содержала 9 групп. После того как в 60-х гг. были получены соед. Xe, Kr и Rn, благородные газы стали размещать в подгруппе VIIIa, а нулевую группу упразднили. Элементы же триад составили подгруппу VIII6. Такое "структурное оформление" группы VIII фигурирует ныне практически во всех публикуемых вариантах выражения П. с.

Отличит. черта первого периода состоит в том, что он содержит всего 2 элемента: H и Не. Водород вследствие специфичности св-в единств. элемент, не имеющий четко определенного места в П. с. Символ H помещают либо в подгруппу Ia, либо в подгруппу VIIa, либо в обе одновременно, заключая в одной из подгрупп символ в скобки, или, наконец, изображая его разл. шрифтами. Эти способы расположения H основаны на том, что он имеет нек-рые формальные черты сходства как со щелочными металлами, так и с галогенами.

Рис. 2. Длинная форма периодич. системы хим. элементов (совр. вариант). Рис. 3. Лестничная форма периодич. системы хим. элементов (H. Бор, 1921).

Второй период (Li-Ne), содержащий 8 элементов, начинается щелочным металлом Li (единств, степень окисления +1); за ним следует металл Be (степень окисления + 2). Металлич. характер В (степень окисления +3) выражен слабо, а следующий за ним С типичный неметалл (степень окисления +4). Последующие N, О, F и Ne-неметаллы, причем только у N высшая степень окисления + 5 отвечает номеру группы; О и F относятся к числу самых активных неметаллов.

Третий период (Na-Ar) также включает 8 элементов, характер изменения хим. св-в к-рых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg и Al более "металлич-ны", чем соотв. Be и В. Остальные элементы-Si, P, S, Cl и Ar-неметаллы; все они проявляют степени окисления, равные номеру группы, кроме Ar. T. обр., во втором и третьем периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллич. характера элементов.

Все элементы первых трех периодов относятся к подгруппам а. По совр. терминологии, элементы, принадлежащие к подгруппам Ia и IIa, наз. I-элементами (в цветной таблице их символы даны красным цветом), к подгруппам IIIa-VIIIa-р-элементами (символы оранжевого цвета).

Четвертый период (K-Kr) содержит 18 элементов. После щелочного металла К и щел.-зем. Ca (s-элементы) следует ряд из 10 т. наз. переходных (Sc-Zn), или d-элементов (символы синего цвета), к-рые входят в подгруппы б. Большинство переходных элементов (все они металлы) проявляют высшие степени окисления, равные номеру группы, исключая триаду Fe-Co-Ni, где Fe в определенных условиях имеет степень окисления +6, а Со и Ni максимально трехвалентны. Элементы от Ga до Kr относятся к подгруппам a (р-элементы), и характер изменения их св-в во многом подобен изменению св-в элементов второго и третьего периодов в соответствующих интервалах значений Z. Для Kr получено неск. относительно устойчивых соед., в осн. с F.

Пятый период (Rb-Xe) построен аналогично четвертому; в нем также имеется вставка из 10 переходных, или d-элементов (Y-Cd). Особенности изменения св-в элементов в периоде: 1) в триаде Ru-Rh-Pd рутений проявляет макс, степень окисления 48; 2) все элементы подгрупп а, включая Xe, проявляют высшие степени окисления, равные номеру группы; 3) у I отмечаются слабые металлич. св-ва. T. обр., св-ва элементов четвертого и пятого периодов по мере увеличения Z изменяются сложнее, чем св-ва элементов во втором и третьем периодах, что, в первую очередь, обусловлено наличием переходных d-элементов.

Шестой период (Cs-Rn) содержит 32 элемента. В него помимо десяти d-элементов (La, Hf-Hg) входит семейство из 14 f-элементов (символы черного цвета, от Ce до Lu)-лaнтaнoидoв. Они очень похожи по хим. св-вам (преим. в степени окисления +3) и поэтому не м. б. размещены по разл. группам системы. В короткой форме П. с. все ланта-ноиды включены в подгруппу IIIa (клетка La), а их совокупность расшифрована под таблицей. Этот прием не лишен недостатков, поскольку 14 элементов как бы оказываются вне системы. В длинной и лестничной формах П. с. специ-фика лантаноидов отражается на общем фоне ее структуры. Др. особенности элементов периода: 1) в триаде Os Ir Pt только Os проявляет макс. степень окисления +8; 2) At имеет более выраженный по сравнению с I металлич. характер; 3) Rn наиб. реакционноспособен из благородных газов, однако сильная радиоактивность затрудняет изучение его хим. св-в.

Седьмой период подобно шестому должен содержать 32 элемента, но еще не завершен. Fr и Ra элементы соотв. подгрупп Iaи IIa, Ac аналог элементов подгруппы III6. Согласно актинидной концепции Г. Сиборга (1944), после Ac следует семейство из 14 f-элементов актиноидов (Z =90 103). В короткой форме П. с. последние включаются в клетку Ac и подобно лантаноидам записываются отд. строкой под таблицей. Этот прием предполагал наличие определенного хим. сходства элементов двух f-семейств. Однако детальное изучение химии актиноидов показало, что они проявляют гораздо более широкий диапазон степеней окисления, в т. ч. и таких, как +7 (Np, Pu, Am). Кроме того, для тяжелых актиноидов характерна стабилизация низших степеней окисления ( + 2 или даже +1 для Md).

Оценка хим. природы Ku (Z = 104) и Ns (Z = 105), синтезированных в кол-ве единичных весьма короткоживущих атомов, позволила сделать вывод, что эти элементы аналоги соотв. Hf и Та, т. е. d-элементы, и должны располагаться в подгруппах IV6и V6. Хим. идентификация элементов с Z= 106 109 не проводилась, но можно предполагать, что они относятся к переходным элементам седьмого периода. Расчеты с помощью ЭВМ свидетельствуют о принадлежности элементов с Z = 113 118 к p- элементам (подгруппы IIIaVIIIa).

Теория П. с. была преим. создана H. Бором (1913 21) на базе предложенной им квантовой модели атома. Учитывая специфику изменения св-в элементов в П. с. и сведения об их атомных спектрах, Бор разработал схему построения электронных конфигураций атомов по мере возрастания Z, положив ее в основу объяснения явления периодичности и структуры П. с. Эта схема опирается на определенную последовательность заполнения электронами оболочек (наз. также слоями, уровнями) и подоболочек (оболочек, подуровней) в атомах в соответствии с увеличением Z. Сходные электронные конфигурации внеш. электронных оболочек в атомах периодически повторяются, что и обусловливает периодич. изменение хим. св-в элементов. В этом состоит гл. причина физ. природы феномена периодичности. Электронные оболочки, за исключением тех, к-рые отвечают значениям 1 и 2 главного квантового чиела л, не заполняются последовательно и монотонно до своего полного завершения (числа электронов в последоват. оболочках составляют: 2, 8, 18, 32, 50,...); построение их периодически прерывается появлением совокупностей электронов (составляющих определенные подоболочки), к-рые отвечают большим значениям п. В этом заключается существ. особенность "электронного" истолкования структуры П. с.

Схема формирования электронных конфигураций атомов, лежащая в основе теории П. с., отражает, т. обр., определенную последовательность появления в атомах по мере роста Z совокупностей электронов (подоболочек), характеризующихся нек-рыми значениями главного и орбитального (l) квантовых чисел. Данная схема в общем виде записывается в виде табл. (см. ниже).

Вертикальными чертами разделены подоболочки, к-рые заполняются в атомах элементов, составляющих последоват. периоды П. с. (номера периодов обозначены цифрами сверху); жирным шрифтом выделены подоболочки, завершающие формирование оболочек с данным п.

Числа электронов в оболочках и подоболочках определяются на основании Паули принципа. Применительно к электронам, как частицам с полуцелым спином, он постулирует, что в атоме не м. б. двух электронов с одинаковыми значениями всех квантовых чисел. Емкости оболочек и подоболочек равны соотв.

Рейтинг статьи:
load...
Комментарии:

Вопрос-ответ:

Что такое периодическая система химических элементов
Значение слова периодическая система химических элементов
Что означает периодическая система химических элементов
Толкование слова периодическая система химических элементов
Определение термина периодическая система химических элементов
periodicheskaya sistema himicheskih elementov это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):