Физическая энциклопедия - квантовый переход
Квантовый переход
скачкообразный переход квант. системы (атома, молекулы, ат. ядра, тв. тела) из одного состояния в другое. Наиболее важными явл. К. п. между состояниями, соответствующими разл. значениям энергии системы, то есть К. п. с одного уровня энергии на другой. Часть уровней энергии квант. системы: ?1-осн. уровень (уровень с наименьшей возможной энергией), ?2, ?3, ?4, возбужденные уровни.
Стрелками показаны квант. переходы с поглощением (направление вверх) и с отдачей энергии (направление вниз). При переходе с более высокого уровня энергии ?k на более низкий ?iсистема отдаёт энергию ?k-?i, при обратном переходе получает её (рис.). К. п. могут быть излучательными и безызлучательными. При излучат. К. п. система испускает (переход ?kВ®?i) или поглощает (переход ?iВ®?k) квант.
эл.-магн. излучения фотон энергии hn (n частота излучения), удовлетворяющей фундам. соотношению: ?k-?i=hn (*) (к-рое выражает закон сохранения энергии при таком переходе). В зависимости от разности энергий состояний системы, между к-рыми происходит К. п., испускаются или поглощаются радиоволны, ИК, видимое, УФ, рентгеновское или g-излучение. Совокупность излучат. К. п. с ниж. уровней энергии на верхние образует спектр поглощения данной квант. системы, совокупность обратных переходов её спектр испускания. При безызлучат. К. п. система получает или отдаёт энергию при вз-ствии с др.системами. Напр., атомы или молекулы газа при столкновениях друг с другом или с эл-нами могут получать энергию (возбуждаться) или терять её. Важнейшая хар-ка любого К. п.вероятность перехода, определяющая, как часто происходит данный К. п. Вероятность перехода измеряют числом переходов данного типа в рассматриваемой системе за ед.
времени (1 с); поэтому она может принимать любые значения от 0 до ? (в отличие от вероятности единичного события, к-рая не может превышать единицы). Вероятности переходов рассчитываются методами квант. механики. Ниже рассмотрены К. п. в атомах и молекулах (о К. п. в тв. теле и ат. ядре см. в ст. (см. ТВЁРДОЕ ТЕЛО, ЯДРО АТОМНОЕ)). Излучательные К.
п. могут быть спонтанными, не зависящими от внеш. воздействий на квант. систему (спонтанное испускание фотона), и вынужденными, происходящими под действием внеш. эл.-магн. излучения резонансной (удовлетворяющей соотношению (*)) частоты v (поглощение и вынужденное испускание фотона). Из-за спонтанного испускания квант. система может находиться на возбуждённом уровне энергии ?к лишь нек-рое кон.
время, а затем скачкообразно переходит на к.-н. более низкий уровень. Ср. продолжительность tK пребывания системы на возбуждённом уровне ?k наз. временем жизни на уровне. Чем меньше tk, тем больше вероятность перехода системы в состояние с низшей энергией. Величина 1/tk, определяющая ср.число фотонов, испускаемых одной ч-цей (атомом, молекулой) в 1 с, наз. вероятностью спонтанного испускания с уровня ?k. Для вынужденного К. п. число переходов пропорц. плотности излучения резонансной частоты v, т. е. энергии фотонов частоты v, находящихся в 1 см3. Вероятности излучат. переходов различны для разных К. п. и зависят от св-в уровней энергии, между к-рыми происходит переход.
Вероятности К. п. тем больше, чем сильнее изменяются при переходе электрич. и магн. св-ва квант. системы, характеризуемые её электрич. и магн. моментами. Возможность излучат. К. п. между уровнями с заданными хар-ками определяется отбора правилами (см. ИЗЛУЧЕНИЕ). Безызлучательные К. п. также характеризуются вероятностями соответствующих переходов ср.
числами процессов отдачи и получения энергии ?k-?i в 1 с, рассчитанными на одну ч-цу с энергией ?k (для процесса отдачи энергии) или с энергией ?i (для процесса получения энергии). Если возможны как излучательные, так и безызлучат. К. п., то полная вероятность перехода равна сумме вероятностей переходов обоих типов. Т. о., за счёт безызлучат.
К. п. время жизни на уровне уменьшается. Безызлучат. К. п. играет существ. роль, когда его вероятность сравнима с вероятностью соответствующего излучат. К. п. Если первая много больше второй, то подавляющее большинство ч-ц будет терять энергию возбуждения при безызлучат. процессах будет происходить тушение спонтанного испускания.
.