Физическая энциклопедия - резонанс
Резонанс
(франц. resonance, от лат. resono звучу в ответ, откликаюсь), относительно большой селективный (избирательный) отклик колебательной системы (осциллятора) на периодич. воздействие с частотой, близкой к частоте её собств. колебаний. При Р. происходит резкое возрастание амплитуды вынужденных колебаний осциллятора. Р. как механич. и акустич.
явление впервые описан итал. учёным Г. Галилеем, а в эл.-магн. системах на примере колебательного контура-англ. учёным Дж. Максвеллом (1868). Различают Р., возникающий в результате воздействия внеш. периодич. силы на осциллятор, и параметрич. Р., возникающий вследствие периодич. изменения одного из энергоёмких параметров осциллятора. Данная статья посвящена первому случаю Р.; о параметрич. Р. (см. ПАРАМЕТРИЧЕСКИЙ РЕЗОНАНС). Рис. 1. Пример гармонич. осцилляторов: амаятник; бмасса на пружине; в колебательный контур. Р. линейных систем. В простейшем случае Р. наступает, когда внеш. периодич. сила F изменяется с частотой со, равной частоте w0 собств. колебаний системы (w=w0). В ходе раскачки осциллятора (напр., груза с массой m, подвешенного на нити или пружине,рис. 1, а, б) его скорость v направлена в ту же сторону, что и сила F, поэтому он получает за период приращение энергии, пропорциональное размаху колебаний. В результате размах колебаний изменяется от периода к периоду в арифметич.прогрессии линейно (рис. 2, а). Однако в реальных условиях всегда существуют факторы, ограничивающие амплитуду колебаний и определяющие возможность существования Р. Это прежде всего диссипация энергии (трение) в системе и неточное совпадение вынуждающей силы с собств. частотой осциллятора (т. н. расстройка частоты). Рис. 2. Нарастание колебаний при wВ®w0: а неограниченное; б при наличии диссипации энергии.
При точном соблюдении условия w=w0 раскачка осциллятора ограничивается диссипацией энергии (рис. 2, б). Колебания нарастают до тех пор, пока внеш. сила не уравновесится силой трения Fтр=-gv (где g постоянный коэфф.). Если же частота внеш. силы несколько отличается от собств. частоты осциллятора (существует расстройка Р.), то даже при отсутствии трения колебания нарастают лишь до тех пор, пока фазовый сдвиг Dj между скоростью осциллятора и внеш. силой не возрастёт до я/2. Амплитуда вынужденных колебаний в этом случае будет определяться расстройкой Р., т. е. величиной w-w0. Т. о., Р. возможен, когда между внеш. силой и вынужденными колебаниями устанавливаются такие фазовые соотношения, при к-рых в систему поступает наибольшая мощность, т. к. скорость системы оказывается в фазе с внеш. силой. Колебания осциллятора под действием периодич. силы F=F0coswt в общем случае при наличии диссипации энергии и расстройки можно описать дифф. ур-нием: где в случае маятника (рис. 1, а) w20=g/l, a=g/m, f0=F0/m, l длина подвеса, g ускорение силы тяжести; для колебат. контура, возбуждаемого электродвижущей силой ?=?0coswt (рис. 1, в), w20=1lLc, a=R/L, f0=?0/L. Решение ур-ния (1), описывающее установившиеся вынужденные колебания, имеет вид: x=x0cos(wt+j), где tgj=aw/(w20-w2), а стационарная амплитуда этих колебаний Зависимость амплитуды колебаний x0 от частоты внеш. силы w (рис. 3) наз. р е з о н а н с н о й к р и в о й. Ширина этой кривой (т. н. ширина линии Р.) Dw представляет собой интервал расстроек Р., внутри к-рого x20 отличается от макс. значения не больше, чем вдвое. Ширина линии Р. тем уже, чем больше добротность осциллятора Q=w/a, поскольку Dw=w0/Q.Рис. 3. a резонансные кривые линейных осцилляторов при разл. добротности Q (Q3>Q2>Q1); б зависимость фазы j от частоты при резонансе. Р. нелинейных систем. При большой амплитуде колебаний осциллятор становится нелинейным, его собств. колебания несинусоидальны, а частота собств. колебаний w0 зависит от их амплитуды x0. Рис. 4. Резонансная кривая нелинейного осциллятора (схематически) в зависимости от амплитуды внеш.
силы: а при малой, б при умеренной, в при большой; штрих-пунктиром дана связь между размахом колебаний x0 и собств. частотой осциллятора w0; пунктиром неустойчивое значение амплитуды колебаний осциллятора; стрелки изменение амплитуды при перестройке частоты. Вследствие этого Р. нелинейного осциллятора отличается тем, что в ходе его раскачки внеш.
силой расстройка Р. изменяется. Если это изменение больше ширины линии Р. Dw (при достаточно большой амплитуде силы; рис. 4), то, чтобы избежать выхода из Р., необходимо подстраивать частоту со внеш. силы вслед за частотой осциллятора w0(x0). Макс. амплитуда, к-рую таким образом можно придать осциллятору, определяется, как и для линейных осцилляторов, балансом между диссипацией энергии и её поступлением от источника внеш.
силы. Зависимость стационарной амплитуды осциллятора от частоты может оказываться в этом случае неоднозначной (верхняя кривая на рис. 4); при перестройке частоты внеш. силы имеют место скачкообразные изменения амплитуды колебании осциллятора, а конкретное значение амплитуды в области неоднозначности зависит от того, в какой последовательности перестраивалась частота силы при раскачке осциллятора (имеет место гистерезис).
Особую группу нелинейных колебат. систем составляют системы, в к-рых происходит компенсация диссипативных потерь благодаря притоку энергии от внеш. постоянного источника. В таких системах устанавливаются незатухающие колебания с вполне определёнными амплитудой и частотой автоколебания.Внешняя периодич. сила малой амплитуды не может существенно повлиять на амплитуду автоколебаний, но может «навязать» генератору свою частоту w, если последняя принадлежит узкому интервалу частот, включающему частоту автоколебаний w0; этот интервал тем больше, чем больше амплитуда внешней силы. Это резонансное явление наз. синхронизацией колебаний.
Р. может наступить не только при совпадении частоты внеш. воздействия с частотой собств. колебаний осциллятора, но и при кратном или дробном соотношении частот (т. н. комбинац. P.): pw=qw0, где р и q любые целые положит. числа. В простейшем случае р и q это номера обертонов (гармоник), представленных соответственно во внеш. силе и в собств.
колебаниях осциллятора. Р. в системах с неск. степенями свободы. В системах с числом степеней свободы n?2 и в распределённых системах Р. сохраняет все осн. черты Р. в системе с одной степенью свободы. В линейном приближении собств. колебания этих систем представляют собой набор нормальных колебаний (мод). Если отклик системы представляет собой суммарный отклик всех степеней свободы, резонансная кривая будет наложением резонансных кривых отд.
норм. колебаний и может иметь сложный характер. Так, в системе с двумя степенями свободы, ввиду того что собств. колебания могут происходить с двумя разл. частотами, Р. наступает при совпадении частоты гармонич. внеш. воздействия как с одной, так и с другой норм. частотой системы (рис. 5). Подбором параметров норм. колебаний можно создать резонансную кривую практически любой формы, что широко используется, напр.
в радиотехнике, для создания фильтров частот. Рис. 5. Резонансная кривая колебат. системы с двумя степенями свободы при сильно разнесённых (a) и при близких друг к другу (б) частотах норм. колебаний w1 и w2. Для резонансного возбуждения к.-л. моды в системе с большим числом степеней свободы необходимо не только обеспечить резонансное соотношение между частотой этой моды и частотой внеш. силы, но и создать такие условия, чтобы воздействие силы на разные элементы системы не оказалось взаимно скомпенсированным (чтобы внеш. сила не была ортогональна норм. колебанию). Напр., при воздействии на струну в точке, где находится узел данного норм. колебания, резонансное возбуждение струны не происходит, т.к. внеш. сила, приложенная к неподвижной точке струны, работы не совершает, колебание струны не возникает и Р. не наблюдается. Резонансные взаимодействия. В системах с мн. степенями свободы явления резонансного характера могут происходить не только вследствие внеш. воздействия, но и в процессе собств. колебаний системы. Напр., в системе, представляющей собой две слабовзаимодействующие колебат.
подсистемы с близкими частотами, может происходить резонансная перекачка энергии из одной подсистемы в другую. В др. случаях моды системы, независимые при малой амплитуде колебаний, с ростом амплитуды могут начать взаимодействовать (обмениваясь энергией) из-за нелинейности системы, если частоты мод wi (i=1, 2, 3, ...) удовлетворяют комбинац.
резонансным условиям типа рw1=qw2 или рw1=qw2+rw3 (р, q, r=1, 2, 3, ...). Согласно законам квантовой механики, энергия атомов и молекул может принимать дискретные значения. Совокупность этих значений энергии ?i энергетич. спектр определяет спектр частот системы wij=(?i-?j)/С›, где i и j номера энергетических уровней.При совпадении частоты внешнего воздействия (обычно эл.-магн. поля) с одной из частот wij возможен Р. Примерами таких резонансных вз-ствий могут служить электронный парамагнитный резонанс, ядерный магнитный резонанс, ферромагнитный резонанс и др. Резонансные спектры атомов, молекул и их соединений служат основой спектроскопич.
анализа самых разнообразных в-в (см. СПЕКТРОСКОПИЯ). Резонансный отбор энергии у систем возбуждённых осцилляторов (атомов, молекул, эл-нов, колеблющихся в магн. поле, и т. п.) с помощью перем. эл.-магн. полей основа действия генераторов когерентного эл.-магн. излучения мазеров и лазеров. Р. играет большую роль в природе, науке и технике.
Р. сооружений и машин при периодич. внешних воздействиях может явиться причиной катастроф. Чтобы избежать резонансного воздействия, подбирают соответствующим образом свойства системы или используют успокоители колебаний, основанные на явлении антирезонанса. В радиотехнике благодаря Р. можно отделить сигналы одной (нужной) радиоили телестанции от всех других.
.