Энциклопедия эпистемологии и философии науки - аксиоматический метод
Аксиоматический метод
Возвращение к А. м. произошло в 19 в. Оно базировалось на двух открытиях — неевклидовой геометрии (переоткрывшей то, что было известно до Евклида, но потом напрочь забыто), и абстрактной алгебре. В неевклидовой геометрии ( Г а у с с, Лобачевский, Бойяи) было показано, что одно из отрицаний пятого постулата — а именно то, что через точку, лежащую вне прямой, можно провести две прямые, параллельные данной — совместимо с остальными аксиомами геометрии. Таким образом, те аксиомы и постулаты, которые создавались, чтобы описать «единственно истинное» пространство, на самом деле описывают целый класс различных пространств. В абстрактной алгебре появились новые числовые системы, причем сразу целые их семейства (напр., р-адические числа) и переменные структуры типа групп. Свойства переменных структур естественно было описывать при помощи аксиом, но теперь уже никто не настаивал на их самоочевидности, а рассматривали их просто как способ описания класса математических объектов. Напр., полугруппа определяется единственной аксиомой — ассоциативности умножения: а° (Ь о с) = (а о Ь) о С. В самой геометрии наступил черед критического переосмысления классических аксиом. Э. Паш показал, что Евклид не усмотрел еще один постулат, столь же интуитивно очевидный, как и описанные им: «Если прямая пересекает одну из сторон треугольника, то она пересечет и другую». Далее было показано, что один из признаков равенства треугольников нужно принять в качестве аксиомы, иначе теряется строгость доказательств, поскольку из остальных аксиом не следует возможность перемещения фигур. Была отброшена аксиома «Целое меньше части», как не имеющая смысла с точки зрения новой математики, и заменена на несколько положений о соотношении мер фигур. И, наконец, Д. Гильберт сформулировал новую аксиоматику геометрии, базирующуюся на высших достижениях математики 19 в.
В эллинские времена и позже понятие числа не описывалось аксиоматически. Только в конце 19 в. Дж. Пеано (Италия) дал аксиоматику натуральных чисел. Аксиоматики Пеано и Гильберта содержат по одному принципу высшего порядка, говорящему не о фиксированных понятиях, а о произвольных понятиях либо совокупностях. Напр., в арифметике — это принцип математической индукции. Без принципов высших порядков однозначное описание стандартных математических структур невозможно.
А. м. был использован для спасения теории множеств после нахождения связанных с нею парадоксов. Спасение само по себе производилось не лучшим способом — латанием парадигмы. Те из принципов теории множеств, которые казались не приводящими к парадоксам и обеспечивали необходимые для математики построения, были приняты в качестве аксиом. Но при этом А. м. был обобщен на логику. Д. Гильберт явно сформулировал аксиомы и правила вывода классической логики высказываний, а П. Бернайс — логики предикатов. Ныне аксиоматическое задание является стандартным способом определения новых логик и новых алгебраических понятий.
Современный А. м. отличается от традиционного тем, что явно задаются не только аксиомы, но и язык, а в логике — еще и правила вывода описываемой теории либо системы. Пересмотренный и усиленный А. м. стал мощным оружием в таких новых областях знания, как когнитивная наука и математическая лингвистика. Он позволяет низводить семантические проблемы на уровень синтаксических и тем самым помогать их решению.
В последние десятилетия по мере развития теории моделей А. м. стал в обязательном порядке дополняться теоретико-модельным. Формулируя аксиоматическую систему, нужно описать и совокупность ее моделей. Минимально необходимым обоснованием системы аксиом служит ее корректность и полнота на заданном классе моделей. Но для применений недостаточно такого формального обоснования — нужно также показать содержательный смысл построенной системы и ее выразительные возможности.
Основным математическим ограничением А. м. служит то, что логика высших порядков неформализуема и неполна, а без нее описать стандартные математические структуры нельзя. Поэтому в тех областях, где есть конкретные числовые оценки, А. м. не может быть применен к полному математическому языку. В таких областях возможна лишь неполная и непоследовательная, так называемая частичная либо содержательная, аксиоматизация.
Неформализуемость понятий сама по себе, как ни странно, не препятствует применению А. м. к данным понятиям. Все равно при работе в фиксированной обстановке есть смысл переходить к гораздо более эффективным формальным моделям. В данном случае положительной чертой формализмов часто может являться их несоответствие реальной ситуации. Формализмы не могут полностью соответствовать содержанию понятий, но если эти несоответствия спрятаны, то формализмами часто продолжают пользоваться и после того, как обстановка перестала быть подходящей для их применения, и даже в ситуации, с самого начала не подходящей для их использования. Подобные опасности существуют и для частичных формализации.
Я Н. Непейвода
Энциклопедия эпистемологии и философии науки. М.: «Канон+», РООИ «Реабилитация»
И.Т. Касавин
2009