Философская энциклопедия - полнота
Полнота
ПОЛНОТА
в логике и дедуктивных науках, свойство аксиоматич. теории, характеризующее достаточность для к.-л. определ. целей её выразит. и дедуктивных средств. Аксиоматич. система наз. дедуктивно полной по отношению к данной интерпретации, если все её формулы, истинные при данной интерпретации, доказуемы в ней. Такое понятие П. связано с понятием истинности и носит семантич. (содержат.) характер. Понятие П. в узком смысле носит синтаксич. (формальный) характер и определяется как невозможность присоединения к системе без противоречия никакой недоказуемой в ней формулы в качестве аксиомы.
В 1931 К. Гёдель установил принципиальную неполноту достаточно богатых аксиоматич. теорий (включающих формальную арифметику натуральных чисел и аксиоматич. теорию множеств), т. е. наличие таких формул, которые в их рамках недоказуемы и неопровергаемы. Это открытие привело к осознанию принципиальной ограниченности роли аксиоматич.метода в математич. логике и стимулировало поиски новых логико-математич. теорий.
см. ст. Доказательство илит. к ней.
Философский энциклопедический словарь. — М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983.
.