Поиск в словарях
Искать во всех

Философская энциклопедия - порядка отношение

Порядка отношение

ПОРЯДКА ОТНОШЕНИЕ

ПОРЯДКА ОТНОШЕ́НИЕ

бинарное (двуместное, двучленное) отношение, обладающее свойствами иррефлексивности (см. Рефлексивность) и транзитивности (из чего следует также его антисимметричность, см. Симметричность). П. о. "упорядочивает" элементы множества, на к-ром оно определено: если " " – символ П. о., то пишут ху, когда хотят сказать, что х п р е д ш е с т в у е т у в смысле данного П. о., а у с л е д у е т за х. [Термины "порядок", "предшествующий", "следующий" и т.

п. применяются как в тех случаях, когда они непосредственно выражают свойства упорядочиваемого множества, соответствующие нек-рому интуитивному представлению о "порядке" и "следовании" – как, напр., в случае "естественного" упорядочения числовых множеств по величине отношением ). Отношение же, являющееся отрицанием любого П. о.

в широком (узком) смысле, есть П. о. в узком (соответственно широком) смысле (напр., ≤ и > или < и ≥). Разнообразнейшие и важные примеры структур представляют собой всякого рода иерархии (реальных и воображаемых) объектов, имеющие, вообще говоря, вид "деревьев". Аналогия между наглядными представлениями, связываемыми с (линейной) упорядоченностью точечных (пространственных) множеств, и временными (а также причинно-следственными) связями в физике и др. естеств. науках позволяет говорить об изоморфизме различных физич. и геометрич. систем относительно их (временнóго и пространственного) упорядочения. Но между этими двумя "естественными" упорядочениями имеется и серьезное различие: отношение предшествования – следования во времени (играющее роль П. о. для реальных физич. процессов) обусловливает естественную и (по-видимому) однозначную "положительную" "направленность" от прошлого к будущему (по поводу филос. аспектов проблемы "направления времени" и связи ее с понятием причины см. Причинность, Пространство и время); упорядочение же точек геометрич. прямой отнюдь не дает к.-л. "естественных" оснований для априорного предпочтения (выбора) одного из противоположных (двойственных в определенном выше смысле) направлений в качестве "положительного", а выбор одного из этих направлений (и соотнесение его "естественному" и "однозначному" порядку событий во времени) есть дело соглашения.

Вместо одновременного рассмотрения двух взаимнодвойств. П. о. на прямой и условной фиксации одного из них в качестве "положительного" часто вообще бывает удобнее трактовать П. о. как тернарное (трехместное) отношение "между", симметричное относительно своих крайних членов. В тех случаях, когда существ. образом проявляется неравноправие двух возможных "естественных направлений" упорядочивания, выбор одного из них в качестве "основного" П.

о. определяется индивидуальным строением упорядочиваемого множества. (Здесь речь идет, конечно, лишь о "естественных" упорядочениях – если таковые имеются; напр., конечное множество из n элементов допускает a priori 1·2·...·n = n! различных упорядочений.) Если, напр., из двух натуральных чисел предшествующим считать меньшее, то натуральный ряд оказывается не только упорядоченным, но и вполне упорядоченным; если же предшествующим считать большее число, то имеет место лишь линейная упорядоченность натурального ряда. "Несимметричность" вполне упорядочиваемых дискретных совокупностей, очевидно, тесно связана с рассмотрением их как "становящихся" в ходе определяющей их к о н c т р у к ц и и. Т.о., понятие времени (олицетворяющее в известном смысле несимметричность возможных упорядочиваний событий реального мира), изгнанное в явном виде из математики в связи с принятием абстракции актуальной бесконечности (см. Математическая бесконечность), вновь – хотя и не в непосредственно наглядной форме – проникает в математику, коль скоро мы отказываемся от этой абстракции и пользуемся лишь абстракцией потенциальной осуществимости (см. также Интуиционизм, Конструктивное направление); такое генетич. рассмотрение вполне упорядоченных совокупностей (в частности, числовых) обусловливает возможность применения к ним (в качестве осн. метода определения и доказательства) математической индукции и ее аналогов. Обобщения этого метода применимы и по отношению к таким частично упорядоченным множествам, каждое линейно упорядоченное множество к-рых вполне упорядочено. Важными примерами таких множеств служат структуры п р е д л о ж е н и й (или формул нек-рого исчисления) [упорядоченные посредством отношения (логического) следования (соответственно выводимости в данном исчислении)], к к-рым применима "индукция по построению формулы".

Лит.: Биркгоф Г., Теория структур, пер. о англ., М., 1952; Рейхенбах Г., Направление времени, пер. с англ., М., 1962; Шиханович Ю. Α., Введение в современную математику, М., 1965, гл. 7, § 5.

Ю. Гастев. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960—1970.

.
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое порядка отношение
Значение слова порядка отношение
Что означает порядка отношение
Толкование слова порядка отношение
Определение термина порядка отношение
poryadka otnoshenie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):