Поиск в словарях
Искать во всех

Философская энциклопедия - взаимозаменимости отношение

Взаимозаменимости отношение

ВЗАИМОЗАМЕНИМОСТИ ОТНОШЕНИЕ

ВЗАИМОЗАМЕНИМОСТИ ОТНОШЕ́НИЕ

(в л о г и к е) – отношение между двумя языковыми выражениями, при к-ром замена одного другим в любом контексте данного языка (или к.-л. выделенной его части) не меняет значения нек-рой (для различных видов В. о. различной) логич. характеристики контекста. Под контекстом произвольного выражения A понимается такое выражение, в к-рое A входит без нарушения синтаксич. правил языка; напр., контекстами выражения "Платон" являются выражения "Ученик Платона", "Ученик Платона и воспитатель Александра Македонского", "Ученик Платона и воспитатель Александра Македонского критиковал учение об идеях" и т.д.; из примера видно, что предложение, в к-рое входит A, также является контекстом для A (при этом A, в свою очередь, может быть предложением, поскольку в языке одни предложения могут быть частями др. предложений). В качестве логич. характеристики контекстов обычно рассматривается их истинность или ложность (контексты в этом случае ограничиваются предложениями), а иногда свойство контекстов быть именами данного предмета или ихсмысл. Рассмотрим В. о. относительно истинности и ложности для естественного языка. Очевидно, напр., что выражения (1) "Аристотель" и (2) "Ученик Платона и воспитатель Александра Македонского" таковы, что если одно заменяется другим в составе таких предложений, как (I) "Аристотель философ" (истинно), (II) "Ученик Платона и воспитатель Александра Македонского критиковал учение об идеях" (истинно) и (III) "Аристотель был римлянином" (ложно), то истинность (соотв.: ложность) полученных таким образом предложений (назовем их соответственно (I´), (II'), (III´) совпадает с истинностью (ложностью) исходных предложений (как говорят, выражения (1) и (2) взаимозаменимы относительно контекстов (I) (III), (I´) (III´). Но в естественном языке есть контексты, относительно к-рых (1) и (2) не взаимозаменимы; напр., (IV) "Выражение "Аристотель" состоит из шести слов" (ложно) и (V) "X не знает, что Аристотель был ученик Платона и воспитатель Александра Македонского" (истинно при соответствующем выборе X); действительно, замена в (IV) выражения (1) на (2) порождает истинное предложение, а замена в (V) выражения (2) на (1) порождает явно ложное предложение ("X не знает, что Аристотель был Аристотель"). Контексты, подобные (IV), наз. м е т а к о н т е к с т а м и; метаконтекст нек-рого выражения – это такой контекст, в к-ром говорится о самом этом выражении как лингвистическом объекте (см. Метаязык). Контекст (V) содержит косвенную речь и является примером косвенного к о н т е к с т а. В естественном языке для любого выражения существуют метаконтексты и косвенные контексты. Наличие метаконтекстов и косвенных контекстов препятствует установлению единого В. о. для всего множества контекстов языка (исключая тривиальный случай такого В. о., когда каждое выражение считается "взаимозаменимым" только с самим собой). Другим препятствием к установлению В. о. в естеств. языке является омонимия. Устранение омонимии (что возможно за счет явного различения разных значений омонимов) и исключение из рассмотрения в связи с В. о. всех метаконтекстов и косвенных контекстов позволяют выделить такую часть языка, в к-рой естественным образом устанавливается В. о. относительно истинности (ложности) ее контекстов. Языки, в к-рых существует такое В. о., наз. объемными, или экстенциональными. Естественные языки не экстенциональны, но в них имеется экстенциональная часть. Формализованные языки (напр., интерпретированные исчисления, рассматриваемые в математической логике, информационно-логические машинные языки), как правило, экстенциональны (см. Экстенциональные и неэкстенциональные языки).

Хотя изучение В. о. началось лишь в конце 19 в. (вместе с развитием логической с е м а н т и к и), однако наличие в естественных языках экстенциональной части позволяло людям издавна пользоваться В. о. в своих повседневных и научных рассуждениях. В математике, напр., употреблялось замены равного равным правило, а в логике – замещения принцип, представляющие собой фактически применение В. о. для специальных целей математики и логики. Всякое В. о. есть отношение типа равенства; поэтому уже известное определение равенства, данное Лейбницем, можно в нек-ром смысле считать формулировкой В. о. Однако как особое логико-семантическое и лингвистическое отношение В. о. в явной форме было впервые рассмотрено нем. логиком Г. Фреге (в статье "О смысле и значении", 1892). Исследуя понятие равенства, он пришел к необходимости различить значение имени (значением имени он называл обозначаемый именем предмет, см. Отношение обозначения) и его с м ы с л; проведя затем различение между контекстами обычного вида, косвенными контекстами и метаконтекстами, Фреге по сути дела сформулировал для естественного языка два В. о. – одно относительно з н а ч е н и я контекстов, а другое – относительно выражаемого ими смысла.

Рассматривая предложения как частный случай имен предметов (именно, он считал их именами истины и лжи как особых абстрактных предметов), он включил В. о. относительно истинности (ложности) предложений во В. о. относительно всех вообще контекстов, являющихся именами к.-л. предметов. Подход Фреге к В. о. носил неконструктивный характер и отражал метафизичность его филос. установки. Так, в его теории молчаливо предполагалось, что различение или отождествление предметов, обозначенных двумя различными именами естественного языка, всегда возможно, что понятие смысла выражения непосредственно ясно, в силу чего всегда можно решить, имеют ли два данных выражения одинаковый или различный смысл. Исследования В. о. продолжили Рассел, Куайн, Чёрч, Карнап и др., показавшие связь В. о. (в его различных видах) с понятием "смысл", "синонимичность", "аналитичность" (см. Синонимы). Для уточнения этих понятий был построен ряд семантических систем (наиболее известная система такого рода принадлежит Карнапу и изложена им в соч. "Meaning and necessity", 1947, 2 изд., 1956). Построение таких систем позволяет изучать свойства В. о. для произвольных языков или для достаточно больших групп языков – естественных или искусственных, уточнять (при соответствующих допущениях) отношение равенства смыслов (синонимию) и т.д. [Связь отношения синонимии с В. о. обнаруживается уже в том, что взаимозаменимость выражений относительно истинности (ложности) их контекстов в данном языке является необходимым условием равенства их смыслов]. Следует подчеркнуть, что семантические теории, построенные рядом зарубежных авторов, основаны на слишком сильных упрощающих предположениях и неконструктивны. Такой характер, в частности, носит теория Карнапа, на логич. построениях к-рого сказывается субъективистский и метафизич. характер его взглядов.

В последние годы изучение В. о. приобрело значение в связи с работами по машинному моделированию мыслительных процессов, автоматич. переводу с одного языка на другой, а также развитию математической лингвистики; в этой связи намечается более конструктивный подход к понятиям, связанным с В. о. (См. также Смысл, Значение, Логическая семантика).

Лит.: Frege G., Über Sinn und Bedeutung, "Z. Philos. und philosophische Kritik", Lpz., 1892 (Neue Folge, Bd 100, H. 1, S. 25–50); Russell В., On denoting, "Mind", L., 1905 (New series, v. 14, No 56, p. 479–93); Lewis С. I., Analysis of knowledge and valuation, La Salle (Ill.), 1946; Quine W. V., From a logical point of view, Camb. (Mass.), 1953; Чёрч А., Введение в математическую логику, пер. с англ., М., 1960 (см. "Введение"); Карнап Р., Значение и необходимость, пер. [с англ.], предисловие С. А. Яновской, М., 1959.

В. Бирюков. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960—1970.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое взаимозаменимости отношение
Значение слова взаимозаменимости отношение
Что означает взаимозаменимости отношение
Толкование слова взаимозаменимости отношение
Определение термина взаимозаменимости отношение
vzaimozamenimosti otnoshenie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):