Поиск в словарях
Искать во всех

Физическая энциклопедия - механика

 

Механика

(от греч. mechanike (techne) наука о машинах, искусство построения машин), наука о механич. движении матер. тел и происходящих при этом вз-ствиях между ними. Под механич. движением понимают изменение с течением времени взаимного положения тел или их ч-ц в пр-ве. В природе это движение небесных тел, колебания земной коры, воздушные и морские течения и т.

п., а в технике движения разл. летат. аппаратов и транспортных средств, частей двигателей, машин и механизмов, деформации элементов разл. конструкций и сооружений, движения жидкостей и газов и мн. др. Рассматриваемые в М. вз-ствия представляют собой те действия тел друг на друга, результатами к-рых явл. изменения скоростей точек этих тел или их деформации, напр.

притяжения тел по закону всемирного тяготения, взаимные давления соприкасающихся тел, воздействия ч-ц жидкости или газа друг на друга и на движущиеся в них тела. Под М. обычно понимают т. н. классич. М., в основе к-рой лежат Ньютона законы механики, а предметом её изучения явл. движения любых матер. тел (кроме элементарных частиц), совершаемые со скоростями, малыми по сравнению со скоростью света.

Движение тел со скоростями порядка скорости света рассматриваются в относительности теории, а внутриат. явления и движение элем. ч-ц изучаются в квантовой механике. При изучении движения матер. тел в М. вводят ряд абстрактных понятий, отражающих те или иные св-ва реальных тел; ими являются: 1) м а т е р и а л ь н а я т о ч к а объект пренебрежимо малых размеров, имеющий массу; это понятие применимо, когда тело движется поступательно или когда в изучаемом движении можно пренебречь вращением тела вокруг его центра масс.

2) Абсолютно твёрдое тело тело, расстояние между двумя любыми точками к-рого всегда остаётся неизменным; это понятие применимо, когда можно пренебречь деформацией тела. 3) Сплошная изменяемая среда; это понятие применимо, когда при изучении движения изменяемой среды (деформируемого тв. тела, жидкости, газа) можно пренебречь мол.

структурой среды. При изучении сплошных сред прибегают к след. абстракциям, отражающим при данных условиях наиболее существ. св-ва соответствующих реальных тел: идеально упругое тело, пластич. тело, идеальная жидкость, вязкая жидкость, идеальный газ и др.

В соответствии с этим М. разделяют на: М. матер. точки, М. системы матер. точек, М. абсолютно тв. тела и М. сплошной среды. Последняя в свою очередь подразделяется на теорию упругости, теорию пластичности, гидродинамику, аэродинамику, газовую динамику и др. В каждом из этих подразделов в соответствии с хар-ром решаемых задач выделяют: статику учение о равновесии тел под действием сил, кинематику учение о геом.

св-вах движения тел и динамику учение о движении тел под действием сил. Изучение осн. законов и принципов, к-рым подчиняется механнч. движение тел, и вытекающих из этих законов и принципов общих теорем и ур-ний составляет содержание т. н. общей, или теоретической, М. Разделами М., имеющими самостоят. значение, явл. также теория колебаний, теория устойчивости равновесия и устойчивости движения, теория гироскопа, механика тел переменной массы, теория автоматич.

регулирования, теория удара и др. Важное место в М., особенно в М. сплошных сред, занимают эксперим. исследования, проводимые с помощью разнообразных механич., оптич., электрич. и др. физ. методов и приборов. М. тесно связана со многими др. разделами физики. Ряд понятий и методов М. при соответствующих обобщениях находит приложение в оптике, статистич.

физике, квант. М., электродинамике, теории относительности и др. (см., напр. (см. ДЕЙСТВИЕ, КАНОНИЧЕСКИЕ УРАВНЕНИЯ МЕХАНИКИ, ЛАГРАНЖА ФУНКЦИЯ, ЛАГРАНЖА УРАВНЕНИЯ В ОБЩЕЙ МЕХАНИКЕ, НАИМЕНЬШЕГО ДЕЙСТВИЯ ПРИНЦИП). Кроме того, при решении ряда задач газовой динамики, теории взрыва, теплообмена в движущихся жидкостях и газах, динамики разреженных газов, магнитной гидродинамики и др. одновременно используются методы и ур-ния как теор. М., так и термодинамики, мол. физики, теории электричества и др. Важное значение М. имеет для мн. разделов астрономии, особенно для небесной механики. Часть М., непосредственно связанную с техникой, составляют многочисленные общетехн. и спец. дисциплины, такие, как гидравлика, сопротивление материалов, строит. М., кинематика механизмов, динамика машин и механизмов, теория гироскопич. устройств, внеш. баллистика, динамика ракет, теория движения наземных, морских и воздушных транспортных средств, теория регулирования и управления движением разл. объектов и др. Все эти дисциплины пользуются ур-ниями и методами теор. М. Таким образом, М. явл. одной из научных основ мн. областей совр. техники. Основные понятия и методы механики. Осн. кинематич. мерами движения в М. являются: для точки её скорость и ускорение, а для тв.

тела скорость и ускорение поступат. движения и угловая скорость и угловое ускорение вращат. движения. Кинематич. состояние деформируемого тв. тела характеризуется относит. удлинениями и сдвигами его ч-ц; совокупность этих величин определяет т. н. тензор деформаций. Для .жидкостей и газов кинематич. состояние характеризуется тензором скоростей деформаций; при изучении поля скоростей движущейся жидкости пользуются также понятием вихря, характеризующего вращение ч-цы.

Осн. мерой механич. вз-ствия матер. тел в М. явл. сила. Одновременно в М. пользуются понятием момента силы относительно точки и относительно оси.. В М. сплошной среды силы задаются их поверхностным или объёмным распределением, т. е. отношением величины силы к площади поверхности (для поверхностных сил) или к объёму (для массовых сил), на к-рые соответствующая сила действует.

Возникающие в сплошной среде внутр. напряжения характеризуются в каждой точке среды касательными и норм. .напряжениями, совокупность к-рых представляет собой величину, наз. тензором напряжений. Среднее арифметическое трёх норм. напряжений, взятое с обратным знаком, определяет величину, наз. давлением в данной точке среды. На движение тела, помимо действующих сил, оказывает влияние степень его инертности.

Для матер. точки мерой инертности явл. её масса, ииертность матер. тела зависит от его общей массы и от распределения масс теле, к-рое характеризуется положением центра масс и величинами, наз. осевыми и центробежными моментами инерции; совокупность этих величин определяет т. н. тензор инерции.

Инертность жидкости или газа характеризуется их плотностью. В основе М. лежат три закона Ньютона. Первые два справедливы по отношению к т. н. инерциальной системе отсчёта. Второй закон даёт осн. ур-ния для решения задач динамики точки, а вместе с третьим для решения задач динамики системы матер. точек. В М. сплошной среды, кроме законов Ньютона, используются ещё законы, отражающие св-ва данной среды и устанавливающие для неё связь между тензором напряжений и тензорами деформаций или скоростей деформаций.

Таков Гука закон для линейно-упругого тела и закон Ньютона для вязкой жидкости (см. ВЯЗКОСТЬ). О законах, к-рым подчиняются др. среды, (см. ПЛАСТИЧНОСТЬ, РЕОЛОГИЯ). Важное значение для решения задач М. имеют понятия о динамич. мерах движения, к-рыми явл. количество движения, момент количества движения (или кинетич. момент) и кинетическая энергия, и о мерах действия силы, каковыми служат импульс силы и работа. Соотношение между мерами движения и мерами действия силы дают т. н. общие теоремы динамики.

Эти теоремы и вытекающие из них законы сохранения кол-ва движения, момента кол-ва движения и механич. энергии выражают св-ва движения любой системы матер. точек и сплошной среды. Эфф. методы изучения равновесия и движения несвободной механич. системы (см. СВЯЗИ МЕХАНИЧЕСКИЕ) дают вариационные принципы механики, в частности возможных перемещений принцип, наименьшего действия принцип, а также Д'Аламбера принцип.

При решении задач М. широко используются вытекающие из её законов или принципов дифф. ур-ния движения матер. точки, тв. тела И системы матер. точек, в частности ур-ния Лагранжа, канонич. ур-ния, ур-ние Гамильтона Якоби, а в М. сплошной среды соответствующие ур-ния равновесия или движения этой среды, ур-ние неразрывности (сплошности) среды и ур-ние энергии.

Основные этапы развития механики. М.одна из древнейших наук. Её возникновение и развитие неразрывно связаны с развитием производит. сил общества, нуждами практики. Раньше других разделов М. под влиянием запросов гл. обр. строит. техники начинает развиваться статика. Первые дошедшие до нас трактаты по М.

, где рассматриваются элем. задачи статики и св-ва простейших машин, появились в Древней Греции. К ним относятся натурфилософские сочинения Аристотеля (4 в. до н. э.), к-рый ввёл в науку термин «М.». Научные основы статики (теория рычага, сложение параллельных сил, учение о центре тяжести, начала гидростатики и др.) разработал Архимед (3 в.

до н. э.). Существенный вклад в дальнейшие исследования по статике (установление правил параллелограмма сил и развитие учения о моменте силы) принадлежит Леонардо да Винчи (15 в.), голл. учёному С. Стевину (16 в.), франц. учёному П. Вариньону (17 в.), а по теории пар сил франц. учёному Л. Пуансо (1804).

Периодом создания научных основ динамики, а с ней и всей М. явился 17 в. Большое влияние на развитие М. оказало учение польск. астронома Н. Коперника (16 в.) и открытие нем. астрономом И. Кеплером законов движения планет (нач. 17 в.). Основоположником динамики явл. итал. учёный Г. Галилей, к-рый дал первое верное решение задачи о движении тела под действием силы (закон равноускоренного падения); его исследования привели к открытию закона инерции и принципа относительности классич.

М.; им же положено начало теории колебаний (открытие изохронности малых колебаний маятника) и науке о сопротивлении материалов (исследование прочности балок). Важные для дальнейшего развития М. исследования движения точки по окружности, колебаний физ. маятника и законов упругого удара тел принадлежат голл. учёному X. Гюйгенсу.

Создание основ классич. М. завершается трудами И. Ньютона, сформулировавшего осн. законы М. (1687) и открывшего закон всемирного тяготения. В 17 в. были установлены и два исходных положения М. сплошной среды: закон вязкого трения в жидкостях и газах (Ньютон) и закон, выражающий зависимость между напряжениями и деформациями в упругом теле (англ.

учёный Р. Гук). В 18 в. интенсивно развиваются аналитич. методы решения задач М., основывающиеся на использовании дифф. и интегр. исчислений. Для матер. точки эти методы разработал Л. Эйлер, заложивший также основы динамики тв. тела. Аналитич. методы решения задач динамики системы основываются на принципе возможных перемещений, развитию и обобщению к-рого были посвящены исследования швейц.

учёного И. Бернулли, франц. учёных Л. Карно, Ж. Фурье и Ж. Лагранжа, и на принципе, высказанном франц. учёным Д'Аламбером и носящем его имя. Разработку этих методов завершил Лагранж, получивший ур-ния движения системы в обобщённых координатах (назв. его именем); им же разработаны основы совр. теории колебаний. Др. путь решения задач М.

исходит из принципа наименьшего действия в форме, высказанной для точки франц. учёным П. Мопертюи и обобщённой на случай системы точек Лагранжем. В М. сплошной среды Эйлером, швейц. учёным Д. Бернулли, а также Лагранжем и Д'Аламбером были разработаны теор. основы гидродинамики идеальной жидкости. В 19 в. продолжается интенсивное развитие всех разделов М.

В динамике тв. тела результаты, полученные Эйлером и Лагранжем, а затем продолженные С. В. Ковалевской и др. исследователями, послужили основой, имеющей большое ирактич. Значение теории гироскопа. Дальнейшему развитию принципов М. были посвящены исследования М. В. Остроградского, ирл. учёного У. Гамильтона, нем. учёных К. Якоб и и Г.

Герца и др. Англ. учёным Э. Раусом, Н. Е. Жуковским и особенно А. М. Ляпуновым была разработана теория устойчивости равновесия и движения. И. А. Вышнеградский заложил основы совр. теории автоматич. регулирования. Доказанная франц. учёным Г. Кориолисом теорема о составляющих ускорения легла в основу динамики относит. движения. Кинематика, развивавшаяся одновременно с динамикой, выделяется во 2-й пол.

19 в. в самостоят. раздел М. Значит. развитие в 19 в. получила М. сплошной среды. Франц. учёными Л. Навье и О. Коши были установлены общие ур-ния теории упругости. Дальнейшие фундам. результаты в этой области получили англ. учёные Дж. Грин, У. Томсон, франц. учёные С. Пуассон, А. Сен-Венан, Г. Ламе, нем. учёный Г. Кирхгоф, Остроградский и др.

Исследования Навье и англ. учёного Дж. Стокса привели к установлению дифф. ур-ний движения вязкой жидкости. Существенный вклад в дальнейшее развитие динамики идеальной и вязкой жидкости внесли нем. учёный Г. Гельмгольц (учение о вихрях), Кирхгоф и Жуковский (отрывное обтекание тел), англ. учёный О. Рейнольдс (начало изучения турбулентных течений), Н.

П. Петров (гидродинамич. теория трения при смазке), нем. учёный Л. Прандтль (теория пограничного слоя) и др. Сен-Венан предложил первую матем. теорию пластич. течения металла. В 20 в. интенсивно развиваются новые области науки теория нелинейных колебаний, основы к-рой были заложены в трудах Ляпунова и франц. учёного А. Пуанкаре, М. тел перем.

массы и динамика ракет, где ряд исходных исследований принадлежит И. В. Мещерскому (труды кон. 19 в.) и К. Э. Циолковскому. В М. сплошной среды появляются два раздела: аэродинамика, основы к-рой, как и всей авиац. науки, были созданы Жуковским, и газовая динамика, основы к-рой были заложены С.

А. Чаплыгиным. Современные проблемы механики. К числу этих проблем относятся уже отмечавшиеся задачи теории колебаний (особенно нелинейных), динамики тв. тела, теории устойчивости движения, а также М. тел перем. массы и динамики косм. полётов. Всё большее значение приобретают задачи, требующие применения вероятностных методов расчёта, т.

е. задачи, в к-рых, напр., для действующих сил известна лишь вероятность того, какие значения они могут иметь. В М. непрерывной среды весьма актуальны проблемы: изучения поведения макрочастиц при изменении их формы, что связано с разработкой более строгой теории турбулентного течения жидкости; решения задач теории пластичности и ползучести; создания обоснованной теории прочности и разрушения тв.

тел. Большой круг задач М. связан с изучением движения плазмы в магн. поле (магнитная гидродинамика), т. е. с решением одной из самых актуальных проблем совр. физики осуществлением управляемого термоядерного синтеза. В гидродинамике ряд важнейших задач связан с проблемами больших скоростей в авиации, баллистике, турбиностроении и двигателестроении.

Много новых задач возникает на стыке М. с др. областями наук. Сюда относятся проблемы гидротермохимии, т. е. исследования механич. процессов в жидкостях и газах, вступающих в хим. реакции, изучение сил, вызывающих деление клеток, механизма образования мускульной силы и др. При решении мн. задач М. используются электронно-вычислительные и аналоговые машины; разработка методов решения новых задач М.

с помощью этих машин (особенно М. сплошной среды) также весьма актуальная проблема. .
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое механика
Значение слова механика
Что означает механика
Толкование слова механика
Определение термина механика
mehanika это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):