Философская энциклопедия - доказательств теория
Доказательств теория
ДОКАЗАТЕЛЬСТВ ТЕОРИЯ — раздел современной математической логики, изучающий свойства и преобразования формальных доказательств, т. е. формальных объектов, синтаксическая правильность которых гарантирует семантическую. Это определение унифицирует множество разнородных понятий формального доказательства, существующих в математической логике: последовательности формул, графы, диаграммы и т. д. В некоторых областях современного общества понятие доказательства стало практически тоже формальным. В частности, понятие документа в юриспруденции включает в себя прежде всего правильность его формы, которая делает его содержание истинным по определению. Однако формальное определение доказательства может в некоторых случаях быть содержательно неадекватным. Часто составленный по всей форме документ прикрывает результат абсолютно незаконных действий либо обмана.
Доказательств теория первоначально появилась в связи с программой Гильберта (см. Формализм), с задачей обоснования того, что каждый формальный вывод содержательно интерпретируемого (реального) утверждения дает содержательно правильный результат, включающий в случае необходимости и соответствующее построение.
Одним из шагов по направлению к данной цели казалось доказательство непротиворечивости формальных теорий. Это средство незаметно подменило собой цель, и поэтому первым громко прозвучавшим результатом теории доказательств была теорема Гёделя о неполноте и ее следствие — о недоказуемости непротиворечивости.
Важным позитивным результатом является теорема П. С. Новикова: утверждение о существовании результата алгоритмического построения, доказанное в классической арифметике, дает верное следствие, и в том числе (грубую) оценку числа необходимых шагов построения. Эта теорема стала основой целого класса результатов современной теории доказательств, обосновывающих совпадение классической истинности и конструктивной обоснованности для многих видов утверждений (в последнее время такие результаты все чаще доказываются методами моделей теории). Следующим шагом в развитии теории доказательств, надолго предопределившим ее магистральное направление, стала формулировка Г. Генценом исчисления секвенций и естественного вывода и доказательство им теоремы нормализации для классического и интуиционистского исчисления секвенций. Содержательно теорема нормализации означает возможность перестроить любой формальный вывод в нормализованный вывод без лемм. Было ясно, что понятие нормализованного вывода применимо и к естественному выводу, но точную формулировку дал только Д. Правиц (1965). Хотя формально определение Правица является сложным, содержательный смысл его вполне прозрачен. Логических правил для каждой связки обычно два: правило ее введения, показывающее, как доказывать утверждения данного вида, и правило удаления, показывающее, как их применять. Напр., для импликации в классической и во многих других логиках правила имеют вид: Допустим А
В, исходя из А А=