— Энгельмановский
метод для исследования выделения кислорода растительными и животными организмами принципиально отличается от предложенных для той же цели методов: газового анализа (Ингенгуз, Соссюр,
Буссенго и др.), счета выделяющихся пузырьков газа (Дютроше, Сакс,
Пфеффер и др.) и метода Буссенго, основанного на определении фосфора. В
Э. методе роль реактива на выделяющийся
кислород присвоена простейшим организмам.
Чувствительность этого реактива оказывается чрезвычайно большой,
так что позволяет определить разницу, равную одной стобиллионной части миллиграмма; при этом реакция происходит немедленно вслед за изменением в количестве выделяемого кислорода.
Как реактив, Энгельман предложил мельчайшие гнилостные
бактерии (Bacterium termo Cohn), как объект наиболее удобный для этой цели, хотя для этой цели можно воспользоваться и другими микроскопическими организмами, как, например, Раrаmaecium aurelia, Colpidium colpoda и др. Все эти
микроорганизмы, находясь в подвижной стадии, отличаются необыкновенной жадностью к кислороду и всегда собираются на поверхности
жидкости; в капле воды, находящейся между покровным и предметным стеклами,
они собираются по краям стекла, а если под покровным стеклом находится пузырек воздуха, то они собираются вокруг него. Постепенно, обыкновенно,
движение этих микроорганизмов в капле воды замедляется и, наконец, совершенно останавливается по мере
того, как кислород, находящийся в капле, потребляется. Если теперь в такую каплю под покровное
стекло ввести зеленый
организм, содержащий
хлорофилл, например, Euglena, несколько клеток какой-нибудь нитчатой зеленой
водоросли или диатомовую (напр., Navicula), то заметно, как вокруг этих клеток собираются подвижные бактерии. Стоит, однако, затенить каплю, и — движение бактерий приостанавливается, чтобы снова начаться при новом освещении препарата. Эти периоды то движения, то покоя объясняются тем, что на свете все хлорофиллоносные
организмы выделяют кислород, который и служит приманкой для бактерий, быстро поглощающих его; в темноте это
выделение кислорода прекращается, и следствием этого является потеря движения бактериями. Пользуясь способностью бактерий направляться к месту выделения кислорода, Энгельманн произвел
наблюдение над интенсивностью процесса выделения кислорода различными хлорофиллоносными организмами в разных лучах спектра. Для этой цели спектр, при помощи особого прибора, построенного по плану Энгельманна, отбрасывался на препарат с заключенной в
нем нитью какой-нибудь водоросли и бактериями таким образом, что нить оказывалась лежащей в различных лучах спектра.
Бактерии, нуждающиеся в кислороде и кишащие вокруг нитчатой водоросли, лежащей в микроспектре. Хлорофильные зерна содержимого клеток здесь не изображены, отмечены же только спектральные линии, чтобы обозначить положение спектра. Увеличение в 200 раз. По Энгельману.
При этом наблюдалось вполне определенное расположение бактерий в различных лучах спектра. Прежде всего и в наибольшем количестве бактерии собираются в красных лучах спектра между фрауэнгоферовыми линиями В и С ближе к С, затем в значительно меньшем количестве, но все же сравнительно с остальными лучами спектра в достаточном количестве, в месте соответствующем линии F, minimum наблюдается в зеленых лучах (см. фиг.). Таким образом, при помощи этото метода удалось показать, что фотосинтез наиболее энергично идет в красных лучах спектра. Этот вывод был вполне подтвержден впоследствии с помощью других методов. — Ср. "Botanische Zeitung" 1881 и 1882 гг.
Б. Исаченко.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон
1890—1907