Поиск в словарях
Искать во всех

Энциклопедия Брокгауза и Ефрона - предельные органические кислоты

Предельные органические кислоты

(хим.) — П. органические кислоты можно рассматривать как продукты замещения водородных атомов предельных углеводородов (см. Парафины) карбоксильными группами (см. Кислоты). Смотря по числу последних различают кислоты П. одноосновные, общей формулы CnH2n+1CO2H (кислоты жирные по преимуществу; см.), и кислоты П. многоосновные, общей формулы CnH2n+2-m—(CO2H)m; как в тех, так и в других в углеводородных остатках CnH2n+1 и CnH2n+2-m один или несколько атомов водорода могут быть замещены: гидроксилами (см.), при чем получаются оксикислоты (см. ниже), или амидогруппами (NH2)', при чем образуются амидокислоты или глицины (см. Гликоколь), или нитрогруппами (NO2)' и т. д.

Кислоты П. одноосновные (и одноатомные) образуются с сохранением числа углеродных атомов в частице: 1) при окислении первичных [Известен случай образования (небольш. количество) П. кислоты и при окислении третичного спирта: (CH3)3C(OH) + O2 (триметилкарбинол) = (CH3)2—CH—CO2H + H2O (изомасляная кислота) (Бутлеров).] П. спиртов и альдегидов: 2CH3—CH2(OH) + O2 = 2CH3—CH(OH)2 [Гликоль такого строения гипотетичен и никем пока получен не был, но эфирные производные, ему отвечающие (ацетали), при окислении спиртов образуются.]; 2CH3—CH(OH)2 — 2H2O = 2CH3—COH (альдегид) и 2CH3—COH + O2 = 2CH3—COOH (кислота уксусная); реакция рассматривается обыкновенно как последовательное окисление водородных атомов того углеродного атома, с которым уже был ранее соединен кислородный атом; окисление ведут, действуя на спирт (альдегид) смесью двухромовокалиевой соли с серной кислотой; спирты с большой частицей могут давать П. кислоты (Ca и Na соли) при нагревании с натристой известью (Дюма и Стас, Гелль):

C15H31—CH2(OH) (эталь) + NaOH = C15H31—CO2Na (пальмитиновая соль; см.) + 2H2;

2) при действии водорода in st. nasc. на непредельные кислоты:

CH2=C(CH3)—CO2H (метакриловая кислота, см. Кротоновая кислота) + H2 = (CH3)2—CH—CO2H (изомасляная кислота; Фиттиг и Пауль),

а равным образом на галоидозамещенные П. кислоты:

CCl3—CO2H (трихлоруксусная кислота) + 3H2 = CH3—CO2H (уксусная кислота) + 3HCl (Мельсанс)

и на П. оксикислоты:

CH3—CH(OH)—CO2H (молочная кислота; см.) + 2HI = CH3—CH2—CO2H + I + H2O,

а так как оксикислоты могут быть получены из кетонокислот (см.), глицинов (см. выше) и из нитрокислот (через глицины), то, следовательно, П. кислоты могут быть получены и из всех этих соединений; П. кислоты образуются еще: 3) "омылением" (см.) соответственных нитрилов (см.):

HCN (цианистый водород) + 2H2O = H2CO2 (муравьиная кислота) + NH3 или H3C—CN + 2H2O = CH3—CO2H + NH3 (Кольбе и Франкланд).

Синтетическими реакциями образования П. кислот являются: 4) действие углекислого газа на натрийорганические соединения (Ванклин): CH3Na + CO2 = CH3—CO2Na (см.); 5) действие окиси углерода (при 160°—200°) на алкоголяты натрия (Гейтер, Пётч): CH3—CH2(ONa) + CO = CH3—CH2—CO2Na, реакция, отвечающая образованию муравьиной соли при действии окиси углерода (при 100° Ц.) на раствор едкой щелочи (Бертело): CO + KOH = HCO2K, окиси же углерода (при 200° Ц.) на натристую известь (Мерц и Тибирица) [Реакция предложена как техническая. Реакция CO с алкоголятами высших спиртов идет очень негладко (Пётч).]; 6) действие хлорокиси углерода на цинкорганические соединения (Бутлеров): Zn(CH3)2 + 2COCl2 = 2CH3—COCl + ZnCl2 и 2CH3—COCl + 2H2O = 2CH3—COOH + 2HCl; [Условия этой реакции в точности не известны; А. М. Бутлерову только раз, при получении триметилкарбинола из COCl2 и Zn(CH3)2, удалось наблюдать образование CH3—CO2H.]; 7) электролиз раствора смеси калиевых солей П. одноосновной кислоты и П. двухосновной эфирной кислоты (Миллер и Гоффер):П. одноосновные кислоты являются продуктами распадения: 8) однои двузамещенных ацетоуксусных эфиров под влиянием концентрированной спиртовой щелочи (Франкланд и Дюппа, И. Вислиценус):

CH3—CO—CHR—CO2C2H5 + 2KOH = CH3—CO2K + CH2R—CO2K + C2H5(OH) и

CH3—CO—CR2CO2C2H5 + 2KOH = CH3—CO2K + CHR2—CO2K + C2H5(OH);

9) однои двузамещенных малоновых кислот (см.) при нагревании (Конрад):

HO2C—CHR—CO2H = CO2 + HO2C—CH2R и HO2C—CR2—CO2H = CO2 + HO2C—CHR2;

10) бариевых солей двухосновных кислот при нагревании с метилатом натрия (Май; ср. Парафины):

HO2C—CH2—CH2—CO2H = CO2 + HO2C—CH2—CH3

или свободных кислот под влиянием солнечного света в присутствии урановых солей (Зеекамп):

HO2C—CH2—CH2—CO2H = CO2 + HO2C—CH2—CH3;

11) непредельных кислот этиленного ряда при плавлении с едким кали (Варрентрапп, Гейтер, Марассе, Кекуле, Фиттиг):

CH3—CH=CH—CO2H + 2KOH = CH3—CO2K + CH3—CO2K + H2;

12) П. кетонов при окислении их двухромовокалиевой солью с серной кислотой (Попов, Вагнер):

2CH3—CO—CH3 + 3O2 = 2CH3—CO2H + 2H—CO2H;

13) П. кетонов же, переходя через оксимы (Бекманн, В. Мейер и Уоррингтон; ср. Кетоны):

(СР3)2—CH—C(N—OH)—CH—(CH3)2 = (CH3)2—CH—CO—NH—CH—(CH3)2 и

(CH3)2—CH—CO—NH—CH—(CH3)2 + HOH = (CH3)2—CH—CO(OH) + H2N—CH—(CH3)2

и 14) некоторых олефинов (см.) при окислении; так, например, триметилуксусная кислота (CH3)3C—CO2H получена Бутлеровым при окислении диизобутилена C8H16 и триизобутилена C12H24. Из перечисленных реакций для получения кислот 1, 3 и 9 идут наиболее гладко и потому чаще других применяются. Некоторые П. одноосновные кислоты встречаются в свободном состоянии в природе (см., например, Муравьиная кислота) и очень многие в виде эфиров глицерина, входя в состав жиров (см.) и масел (см.); уксусная кислота (см.) образуется при брожении спирта обыкновенного, а нормальная масляная и каприловая при брожении молочнокислого кальция (маслянокислое брожение; см.). Низшие члены предельных кислот при обыкновенной температуре (+20° Ц.) жидки; начиная с каприловой кислоты CH3—(CH2)8—CO2H (плавится при 31,4°), они тверды; правильности в точках плавления подмечены только для кислот нормального ряда, т. е. содержащих только одну метильную группу, соединенную с карбоксилом через посредство цепи групп (CH2)', а именно В. Мейер и Якобсон (1893) и Массоль (1896) указали, что они расположены на двух кривых (фиг. 1); верхняя отвечает точкам плавления кислот с четным числом атомов углерода, а нижняя — с нечетным (ср. Парафины); кислотам, содержащим C4 и С5, отвечают в обеих кривых минимумы; начиная с C6 и C7 кривые идут почти параллельно до C18 и C19; выше замечается некоторая неправильность, но температуры плавления высших кислот нельзя считать достоверно установленными. [По Мари, церотиновая кислота содержит не C27, a C25; в таком случае ее точка плавления наблюдена вполне правильно.]Фиг. 1.

Кислоты другого строения имеют иногда гораздо высшие точки плавления; так триметилуксусная кислота (Бутлеров) (CH3)3C—CO2H плавится при +36,4°, т. е. на 93,9° выше нормальной валериановой — CH3—(CH2)3—CO2H. [Вообще вещества, содержащие много метильных групп, обладают более высокими точками плавления и более низкими точками кипения; ср. свойства триметилкарбинола (см.) со свойствами бутиловых спиртов и свойства тетраметилбутана (см. Парафины) со свойствами изомерного с ним нормального октана.] Точки кипения П. нормальных кислот повышаются приблизительно на 19° с увеличением веса частицы на гомологическую разность CH2; для кислот от C1 до C6 разность в точках кипения более 19°, и здесь довольно ясно заметно, что точки кипения кислот с нечетным числом атомов углерода, а именно CH2O2 — 101°, C3H6O — 143° и C5H10O2 — 185° лежат на одной прямой (разность между 143 — 101 = 185 — 143), а точки кипения кислот с четным числом атомов углерода (C2H4O2 — 118°, C4H8O2 — 161,5° и C6H12O2 — 205°), на другой, лежащей несколько ниже (разности между 205° — 161,5° — 118° = 43,5° и несколько выше предыдущих); нормальные кислоты имеют наиболее высокие точки кипения — все их изомеры кипят ниже; начиная с C9 (кислоты пеларгоновой; см.), П. кислоты не перегоняются без разложения под атмосферным давлением. Удельные веса П. кислот падают по мере увеличения частицы, так как одновременно и процентный состав их приближается к составу углеводородов; удельный вес первых трех кислот выше удельного веса воды, а именно: CH2O2 = 1,231 (10°), C2H4O2 = 1,052 (16,5°) и C3H6O2 = 1,013 (0°); удельные веса остальных кислот ниже единицы. Низшие члены ряда растворимы хорошо в воде [Свойство это находится в связи со строением: нормальная масляная кислота смешивается с водой во всех отношениях, а изокислота не обладает этим свойством (см.).]; с увеличением частицы растворимость быстро падает. В спирте и эфире все одноосновные кислоты хорошо растворимы. Кислотные свойства высших членов ничтожны. Число изомеров П. одноосновных кислот равно числу существующих первичных спиртов или альдегидов с данным числом атомов углерода; изомерия всецело обусловлена изомерией углеводородного остатка, соединенного с карбоксилом (см. Строение химическое). Кислоты общей формулы R—CH2—CO2H называются первичными, RXCH—CO2H — вторичными и RXYC—CO2H — третичными (R, X и Y — остатки П. углеводородов). Как кислоты, все они образуют соли (см.), эфиры (см.), ангидриды (см.), галоидангидриды (см. Хлорангидриды), амиды (см.) и нитрилы (см.); при действии галоидов (лучше всего хлора и брома) они дают галоидозамещенные кислоты, от которых нетрудно перейти к окси-, аминои нитрокислотам и т. д. От П. кислот легко можно перейти к альдегидам (см.) и спиртам первичным (см.), к кетонам (см.), спиртам третичным (см. Триметилкарбинол), к парафинам (см.) и через амиды к аминам. Современные представления о строении П. одноосновных кислот выработаны при изучении уксусной кислоты. В 1839 г. Дюма, действуя на уксусную кислоту хлором на солнечном свету, получил кристаллическую кислоту состава C8Cl6O6·2HO (С = 6; O = 8); кислоту эту, которая по формуле являлась продуктом замещения в уксусной кислоте C3H6O6·2HO шести атомов водорода хлором, Дюма назвал "хлоруксусной" кислотой. По основности хлоруксусная кислота не отличалась от уксусной (обе одноосновны), и Дюма указал, что в "органической химии имеются (следовательно) известные типы (см.), которые сохраняют свой характер даже и в том случае, когда вместо водорода, заключающегося в них, вводятся в соединение равные объемы хлора, брома или йода" (ср. Замещение). Персоц, а затем Дюма (в 1840 г.) нашли, что "хлоруксусная кислота под влиянием щелочей распадается на хлороформ (см.) и углекислоту: C8H2Cl6O8 = 2C2O4 + 2C2HCl3, аналогично распадению уксусной кислоты при сплавлении со щелочью на углекислоту и метан (см. Парафины): C8H2H6O8 = 2C2O4 + 2C2HH3. Наконец, Мельсанс (в 1842 г.) показал, что при действии амальгамы калия "хлоруксусная" кислота замещает хлор водородом, превращаясь обратно в уксусную кислоту. Тождество "типа" уксусной и "хлоруксусной" кислот нельзя было теперь отрицать, и Берцелиус, раньше противившийся признанию такового (см. Электрохимическая теория), должен был его признать, что и сказалось на формулах этих кислот, предложенных им в его учебнике; обе, по его мнению, должны представлять "сочетанные" производные радикала "метила" и щавелевой кислоты, а именно "хлоруксусная" должна быть: C4Cl6 + C4O6, а уксусная — C4H6 + C4O6 (C = 6, O = 8). [Под кислотами Берцелиус подразумевал теперешние ангидриды кислот. C4O6 несуществующий ангидрид щавелевой кислоты. Формулы Берцелиуса несколько отличались от приведенных в тексте, так как Берцелиус употреблял удвоенные, перечеркнутые паи (см. Пай).] Формулы эти противоречили водородной теории кислот Дэви-Либиха, теории, сохранившейся и до настоящего времени (см. Кислоты); кроме того, они шли вразрез с "унитарной" теорией (см.), точно так же признаваемой и ныне, и тем не менее они послужили точкой отправления для работ Кольбе и Франкланда; работы эти, как казалось, их отчасти оправдали. Кольбе понимал под радикалами (см.) группы атомов, существующие в соединениях, как таковые, считал их аналогичными до известной степени с атомами элементарных тел и, убежденный в правильности представлений Берцелиуса, предпринял вместе с Франкландом (в 1848 г.) ряд опытов над разложением уксусной кислоты на ее радикалы. Электролиз уксусной кислоты позволил, как думали авторы, выделить один из них, а именно метил (см. Парафины и Радикалы), что же касается радикала щавелевой кислоты, то неполучение его (по Кольбе) должно было объясняться способностью окисляться под влиянием кислорода разлагающейся одновременно воды (считаемой нами теперь конституционной). В предыдущем (1847) году Дюма получил нагреванием уксусно-аммиачной соли с фосфорным ангидридом цианистый метил, и для дальнейшего доказательства правильности своих взглядов Кольбе и Франкланд превращают теперь (1848) обратно нитрилы [Цианистые эфиры (иначе нитрилы; см.) были раньше синтезированы Пелузом при нагревании солей серно-винных кислот с цианистым калием: C2H5—O—SO2—OK + KCN = C2H5—CN + KO—SO2—OK (C = 12, O = 16, S = 82, K = 39 и N = 14).] в кислоты. Опыт, таким образом, показал, что допущение предсуществования метила в уксусной кислоте правильно, и позволил Кольбе впоследствии развить свою теорию замещения (ср. соотв. ст.), изложенную им в статье: "Ueber den natürlichen Zusammenhang der organischen mit den unorganischen Verbidungen, die wissenschaftliche Grundlage zu einen naturgemässen Classification der organischen chemischen Körper" [Ко времени появления этой статьи подоспел синтез Ванклина пропионовой кислоты (см. выше) из углекислоты и натрий-этила (1857). Статья Кольбе вышла теперь отдельным изданием в Ostwald's "Klassiker der exakten Wissenschaften" (№ 92, 1897).] (подробности см. Строение химическое). Современная формула уксусной кислоты (см.) рассматривает ее почти с той же точки зрения, которая была установлена Кольбе, с той лишь разницей, что формула Кольбе (Берцелиуса) могла бы до известной степени объяснить удвоенный вес частицы уксусной кислоты и ее гомологов, а наши формулы этого сделать не в состоянии. Первая первичная кислота, кислота уксусная, была синтезирована Кольбе; первая вторичная кислота, изомасляная (см. Масляные кислоты) — Марковниковым и первая третичная кислота, триметилуксусная — Бутлеровым. Частные описания П. одноосновных кислот общей формулы CnH2nO2 см. Валериановые кислоты, Жирные кислоты, Масло коровье, Лавровая, Лигноцериновая, Масляные, Мелиссиновая (Воск; см.), Муравьиная, Пальмитиновая, Пропионовая, Стеариновая, Уксусная и Ундециловая кислоты.

П. двухосновные и двухатомные кислоты обладают общей формулой CnH2n(CO—OH)2 = CnH2n-2O4. Общих методов синтеза их не имеется, а потому подробности см. Щавелевая, Малоновая, Янтарная, Глутаровая, Адипиновая, Пимелиновая, Пробковая, Себациновая кислоты и их гомологи. Все это твердые, хорошо кристаллизующиеся вещества, большей частью хорошо растворимые в воде (за исключением высших членов) и нерастворимые в хлороформе; реакция их сильно кислая. Они не летучи с парами воды. Гомологи малоновой кислоты легко при нагревании распадаются с выделением CO2; гомологи янтарной при нагревании легко теряют H2O, превращаясь в ангидриды (об отщеплении ими CO2 см. выше); кислоты, у которых карбоксильные группы более удалены друг от друга, могут иногда перегоняться без разложения. Строго такое деление, впрочем, провести не удается. Что касается температуры плавления нормальных двухосновных П. кислот, то и для них наблюдается, что кислоты с четным числом атомов углерода плавятся выше кислот с нечетным числом атомов углерода (Байер); разница с одноосновными кислотами проявляется, главным образом, в том, что у первых с увеличением частицы температура плавления падает (см. фиг. 2), а у вторых возрастает, так что между кислотами C20 и C30 можно ожидать пересечения кривых, а следовательно, обращения правильности, если только не будет найден такой же минимум, какой наблюдается для кислот одноосновных, содержащих C4 и C6 (см. выше).Фиг. 2.

Относительно П. кислот большой основности см. Трии Тетракарбоновые кислоты, а также Трикарбаллиловая кислота.

П. оксикислоты однои многоосновные — см. Спиртокислоты. Отдельные представители их см. кислоты: Угольная, Гликолевая, Гидракриловая, Глицериновая, Молочная, Оксимасляные, Оксиглутаровые, Винные, Лимонная, Сахарная кислота и ее изомеры и т. д.

Согласно постановлению Женевского конгресса 1892 г. названия одноосновных жирных кислот, во-первых, производятся от названия соответственного углеводорода [Во французской редакции: "Le nom des acides menobasiques... ist tiré de celui de l'hydrocarbone correpondant urvi du suffixe — oïque". В немецкой редакции суффикс выпущен и l'acide éthanoïque переведена как Ethansäure. Ф. Ф. Бейльштейн предложил и по-русски называть ее этанкислотой.], многоосновные кислоты получают названия — "ди-, три-, тетракислоты"; и во-вторых, их карбоксил считается нераздельной частью углеродного скелета. Номенклатура удобна, пока мы имеем дело с нормальными кислотами, или когда карбоксил находится в наиболее длинной цепи; так H—CO2H есть метанкислота (муравьиная), CH3—CH2—CO2H — этанкислота (уксусная), CH3—CH2—CO2H — пропанкислота (пропионовая), CH3—CH2—CH2—CO2H — бутанкислота (масляная), HO2C—CH2—CH2—CO2H — бутандикислота (янтарная) и HO2C—CH(CH3)—CH(CH3)—CO2H — диметил-(2,3)-бутандикислота (диметилянтарная симметричная). Когда карбоксил помещается в боковой цепи, то уже появляются затруднения; Комб предлагает называть кислоту этилизопропилуксусную: CH3—CH(CH3)—CH(CO2H)—CH2—CH3, — метил-2-пентан-метил-3-кислота, [Acide méthyl-2-pentane-méthyloïque 3.], а кислоту ацетилентетракарбоновую: HO2C—CH(CO2H)—CH(CO2H)—CO2H — диметил-2,3-кислота-бутандикислота, [Acide diméthyloïque 2,3-butane-dioïque, y Ф. Ф. Бейльштейна — Butandisäure-2,3-Dimethylsäure.], но пока общепринятой номенклатуры (особенно русской) нет. 3) В одноосновных кислотах с нормальной или симметричной углеродной цепью углерод карбоксила считается первым, во всех других случаях сохраняется нумерация углеводородов (см. Парафины):

(1)CH3—(2)CH2—(3)CHBr—(4)CO2H — α-монобромомасляная есть, следовательно, бромо-2-бутанкислота, а

(1)CH3—(2)CH(CH3)—(3)CH2—(4)CO2H — изовалериановая кислота есть метил-2-бутанкислота-4 (подроб. см. Химическая номенклатура).

А. И. Горбов. Δ.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон

1890—1907

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое предельные органические кислоты
Значение слова предельные органические кислоты
Что означает предельные органические кислоты
Толкование слова предельные органические кислоты
Определение термина предельные органические кислоты
predelnye organicheskie kisloty это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины