Химическая энциклопедия - оптические материалы
Оптические материалы
, кристаллич. или аморфные материалы, предназначенные для передачи или преобразования света в разл. участках спектрального диапазона. Различаются по строению, св-вам, функцией, назначению, а также по технологии изготовления.
Структура и свойства. По строению О. м. подразделяют на монои поликристаллические, стекла, аморфные, стекло-кристаллические и жидкокристаллические. Прир. монокристаллы, напр., флюорита CaF2, кварца SiO2, кальцита СаСО 3, слюды, каменной соли и др., давно используют в качестве О. м. Кроме того, используют большое кол-во синтетич. монокристаллов, обладающих прозрачностью в разл. участках оптич. диапазона (рис. 1) и имеющих высокую однородность и определенные габариты.
Поликристаллические О. м. характеризуются прозрачностью, по величине сходной с прозрачностью монокристаллов, и лучшими по сравнению с ними конструкц. св-вами. Наиб. применение находит оптич. керамика (иртра-ны) на основе Аl2 О 3 (напр., поликор, или лукалокс), Y2O3 (иттралокс), MgAl2O4, SiO2 (кварцевая оптич. керамика), цирконато-титанатов Pb, La (электрооптич. керамика), а также бескислородные поликристаллические О. м. для ИК области спектраLiF, MgF2, ZnS, ZnSe и др.
Оптические стекла характеризуются высокой прозрачностью в разл. спектральных диапазонах, высокой однородностью структуры, позволяющей сохранять неизменность фронта световой волны при ее распространении в толще стекла, коррозионностойкостью, хорошими конструкц. св-вами, относительно простой технологией изготовления крупногабаритных изделий и изделий со сложной конфигурацией. Применяются с 18 в. В качестве О. м. используют бесцв. или цветные оксидные и бескислородные стекла (см. также Стекло неорганическое). Большинство оксидных оптич. стекол-силикатные (более 30-40% SiO2 по массе), свинцовоили боросиликатные, а также многокомпонентные оксидные системы из 10-12 разл. оксидов, напр. алюмоси-ликафосфатные стекла, содержащие Аl2 О 3, SiO2, P2O5. Несиликатные оксидные стекла содержат Р 2 О 5, В 2 О 3, GeO2 или ТеО 2. При изменении состава стекол изменяются и их оптич. константы, гл. обр. показатель преломления nD и коэф. дисперсии света vD. В зависимости от величин этих характеристик на диаграмме nD Ч vD (т. наз. диаграмма Аббе) О. м. делят на типы-кроны и флинты (рис. 2). Флинты характеризуются малым коэф. дисперсии (vD < 50), кроны -большим (vD > 50). Стекла обоих типов наз. легкими или тяжелыми в зависимости от величины показателя преломления. Обе разновидности стекол имеют общие компоненты SiO2, Na2O, К 2 О. Кроме того, для увеличения vD в состав кронов добавляют В 2 О 3, А12 О 3, ВаО, СаО, в состав флинтов-PbO, TiO2, ZnO, MgO, Sb2O3. Осветлители стекол-As2O3 и Sb2O3. Наиб. высокими значениями vD обладают фосфатные флинты на основе Р 2 О 5 (особенно при введении фторидов металлов).
Рис. 2. Классификация оптич. стекол (диаграмма Аббе) в зависимости от их показателя преломления (nD) и коэф. дисперсии света (vD): ЛК-легкие кроны; ФК-фосфатные кроны; ТФК-тяжелые фосфатные кроны; К-кроны; БК-баритовые кроны; ТК тяжелые кроны; КФ кронфлинты: БФ-баритовые флинты; ТБФ-тяжелые баритовые флинты; ЛФ-легкие флинты; Ф-флинты; ТФ-тяжелые флинты; СТФ-сверхтяжелые флинты; СТК-сверхтяжелые кроны.
Особое место среди стекол занимают фотохромные (см. Фотохромизм )стекла. Выделяют также кварцевые стекла, уникальные по термои хим. стойкости, огнеупорности и др. св-вам. Стеклообразный SiО 2 -осн. компонент кварцевых оптич. волокон для протяженных волоконно-оптич. линий связи; такие волоконно-оптич. материалы характеризуются миним. оптич. потерями на поглощение (~ 10-6 см -1). Для линий протяженностью 10-100 м используют также оптич. волокна на основе прликомпонентных стекол и полимеров (оптич. потери ~ 10-3 Ч 10-5 см -1).
Оптич. потери (теоретические) у бескислородных оптич. стекол на 1-3 порядка ниже, чем у оксидных. В качестве таких материалов для ИК диапазона используют обычно разл. халькогенидные стекла, содержащие As, S (Se, Те), Sb, P, Tl, Ge и др. Наим. оптич. потерями в ИК диапазоне обладают оптич, волокна на основе галогенидов Ag, Tl и их твердых р-ров и волоконные световоды на основе фтороцирконатных (содержат Zr, F с добавлением Ва, Na, РЗЭ и др.) и халькогенидных стекол [содержат As-S(Se)-Ge].
К аморфным О. м. относятся мн. нсорг. и орг. в-ва. Среди первых наиб. распространены аморфный Si, SiO2, оксиды II-VI групп, соед. типа AIIBVI, среди вторых-разл. полимеры: полиметилметакрилат (орг. стекло), полистирол, мн. фторопласты.
Неорг. аморфные О. м. используют гл. обр. в виде разл. пленок, иногда в виде массивных образцов (напр., аморфный Si); орг. аморфные О. м.-в виде пленок, оптич. волокон, массивных образцов (напр., полистирол).
О стеклокристаллических О. м. см. Ситаллы, о жидкокристаллических-Жидкие кристаллы.
К особому классу относятся О. м. с непрерывно изменяющимся составом и оптич. св-вами. Основа таких материалов градиентные оптич. волокна или самофокусирующие градиентные оптич. элементы (напр., селфок, или гра-дан) в виде цилиндрич. образцов (диаметр 1-10 мм), обеспечивающих фокусировку света. Изготовляют их из таллиево-силикатных или силикогерманатных стекол, кристаллич. материалов (напр., на основе твердых р-ров галогенидов Т1), полимеров (напр., полиметилметакрилата). Градиентные слои и пленки на монокристаллах ниобата Li и др. кристаллич. или стеклянных материалах основа интегрально-оп-тич. устройств.
По спектральному диапазону различают О. м., пропускающие в УФ, видимой и ИК областях спектра. Нек-рые О. м. характеризуются широким плато спектрального пропускания, иногда разбиваемого на отдельные окна прозрачности селективными полосами поглощения примесей. Для работы в УФ (> 0,2 мкм), видимой и ближней ИК областях спектра применяют гл. обр. кварц, фториды Li и Na; для работы в средней и дальней областях ИК спектра-преим. бескислородные О. м. Такие О. м., как Si, Ge, GaAs, InSb, пропускают только ИК излучение; галогениды щелочных металлов, BaF2, ZnSe прозрачны в видимой, ближней и средней ИК областях спектра; КСl, GaAs, TlBr-TlI и др. пропускают интенсивное лазерное ИК излучение.
С увеличением массы атомов, составляющих структуру О. м., длинноволновая граница пропускания большего числа О. м. перемещается в сторону расширения спектрального диапазона; напр., для анионов имеет место след. ряд: оксиды фториды сульфиды < хлориды селени-ды < бромиды теллуриды < (либо =) иодиды. Для иоди-да Cs длинноволновая граница прозрачности составляет ~ 60 мкм.
По назначению различают: О. м. для элементов оптич. устройств; просветляющие, отражающие и поглощающие покрытия; электрооптич., магнитооптич., акустооптич. и пьезооптич. материалы. Иногда к О. м. относят лазерные материалы, материалы для преобразования света в тепло и электричество, а также О. м. в виде композитов, порошков, эмульсий: дисперсные фильтры, отражающие покрытия, люминесцирующие стекла, красители для лазеров. В качестве О. м. иногда применяют оптич. клеи (с определенным показателем преломления), прозрачные орг. иммерсионные жидкости и др.
Материалы оптич. устройств (линзы, светофильтры и т. п.) имеют определенный показатель преломления, высокую прозрачность в определенном спектральном диапазоне, хорошо поддаются оптико-мех. обработке (шлифованию, полировке) пов-сти. Наиб. важное св-во-оптич. однородность, т. к. ослабление (потери) света, наряду с поглощением, определяется рассеянием на разл. дефектах структуры-микровключениях посторонних фаз, пузырях и свилях (областях стекол с измененным показателем преломления), микропорах (для керамики) и т. п.
Просветляющие покрытия служат для уменьшения коэф. отражения оптич. устройств, отражающие-для изготовления зеркал, поглощающие-для чернения пов-сти. Разновидность просветляющих покрытий интерфе-ренц. покрытия толщиной 10-150 мкм; они м. б. многослойными и характеризоваться постепенным изменением показателя преломления от низкого (1,3-1,55; NaAlF4 , MgF2 или SiO2) до среднего (2,0-2,6; ZrO2, GeO2, ZnS, TiO2 или A12S3) и высокого (более 3,0; Si, Ge). Отражающие покрытия изготовляют гл. обр. из Ag, Au, Al, поглощающие из углерода, оксидов, нитридов и силицидов.