Философская энциклопедия - алгоритм
Алгоритм
АЛГОРИТМ
[от algorithm!; algorismus, первоначально — лат. транслитерация имени ср.-азиат. учёного 9 в. Хорезми (Мухаммед бен Муса аль-Хорезми)], программа, определяющая способ поведения (вычисления); система правил (предписаний) для эффективного решения задач. При этом подразумевается, что исходные данные задач могут изменяться в определ. пределах (массовость А.); процесс применения правил к исходным данным (путь решения задачи) определён однозначно (детерминированность А.); на каждом шаге процесса (применения правила) известно, что считать его результатом (результативность А.). Свойство массовости А. означает, что А. связан с решением общей проблемы, в условия которой входят параметры; ответ «да» или «нет» па эту проблему даётся не прямо, а косвенно — в зависимости от значений параметров, в общем случае допускающих счётнобесконечное множество значений. Поэтому точное описание А. предполагает указание на множество возможных значений параметров (т. е. частных вопросов) проблемы. Обычно (без ущерба для общности понятия А.) в качестве возможных значений параметров выбирают слова в некотором фиксированном алфавите, при этом А. сводится к процессу преобразования слов. Результативность процесса применения А. связывают с его остановкой (обрывом), что рассматривают как применимость А. к исходным данным задачи. Свойство детерминированности А. выражается в том, что когда заданы А. и значения параметров (т. е. выбран частный случай проблемы), процесс решения идёт чисто формально (механически), так что во всех деталях известны последовательность и содержание конкретных (дискретных) шагов работы А. Детерминированность исключает возможность произвольных решений, что достигается изоляцией алгорит-мич. процесса от воздействий извне. Именно эта черта А. делает его одновременно и синонимом автоматически работающей машины, и основой автоматизации процессов преобразования информации.
Общая проблема совместно с требованием разыскания А. наз. алгоритмической. Если А. предложен, то спрашивается: всегда ли ответы по предложенному А. будут ответами на частные вопросы данной алгоритмич. проблемы? Это выясняют доказательством соответствия А. данной проблеме, после чего алгоритмич. проблему считают разрешимой А. (или алгоритмически разрешимой). Обычно задачи, решаемые А., сводятся к распознаванию свойств конструктивных объектов (см. Конструктивное направление). Напр., А. распознавания свойства общезначимости для формул логики высказываний даётся их табличной оценкой. Это же свойство характеризует и множество доказуемых формул исчисления высказываний, которос, т. о., алгоритмически разрешимо относительно истинности.
Вопрос о проблемах, разрешимых А., связан с вопросом об использовании машин вместо человека и пределах автоматизации процессов мышления. Вера в алгоритмич. разрешимость всех (по крайней мере, всех математич. и логич.) проблем имела значит, влияние в философии начиная с Декарта и Лейбница. В 1931 К. Гёдель доказал, что в системах аксиом определ. вида есть проблемы, неразрешимые А. этих систем, в связи с чем возник вопрос об описании класса всех возможных типов А. в рамках строгой (формальной) теории А. В 1936 появилось песк. вариантов стандартных систем уточнения понятия А. (формализации функций, вычислимых по Гёделю, Клини, Тьюрингу, Черчу) и была высказана эмпирически обоснованная гипотеза, что иных А., удовлетворяющих свойствам содержат. понятия А., но неэквивалентных стандартным формализациям, не существует. Эта гипотеза означала признание принципиальной завершённости поиска средств, привлекаемых для решения алгорит-мич. проблем, и вместе с тем — признание существования алгоритмически «абсолютно неразрешимых» проблем. Однако подобные выводы отнюдь не ограничивали развитие салон теории А., ставшей с нач. 50-х гг. внутри логики и математики теоретич. основой конструктивизма, а в области вычислит, науки и техники — основой машинного решения математич. задач, моделирования сложных процессов и автоматизации процессов производства. Важный этап этого развития — созданная А. А. Марковым теория нормальных А., уточняющая непосредственно интуитивное понятие А., и предложенная им формулировка осн. абстракций теории А.
Колмогоров А. Н., Успенский В. А., К определению А., «Успехи математич. наук», 1958, т. 13, в. 4 (82); Трахтенброт Б. А., А. и машинное решение задач, М., 1960"; M а л ь ц е в А. И., А. и рекурсивные функции, М., 1965; Роджерс X., Теория рекурсивных функций и эффективная вычислимость, пер. с англ., М., 1972; Бирюков Б. В., Ал-горитмич. подход к науке и концепция расплывчатых А., в кн.: Кибернетика и совр. науч. познание, M., 197B; Криницкий Н. А., А. вокруг нас, М., 1977; Успенский В. А., Машина Поста, М., 1979.
M. M. Новосёлов.
Философский энциклопедический словарь. — М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов. 1983.