Поиск в словарях
Искать во всех

Математическая энциклопедия - хана - банаха теорема

Хана - банаха теорема

линейный функционал f(x), определенный на линейном многообразии Lдействительного или комплексного векторного пространства X, может быть продолжен до линейного функционала F(X), определенного на всем X, если существует полунорма р(х)такая, что

для любого Такое продолжение определяется, вообще говоря, неоднозначно, но для любого из них неравенство

при любом сохраняется.

В случае действительного пространства . полунорму можно заменить положительно однородным функционалом, а неравенство (*) односторонним неравенством остающимся справедливым н для продолженного функционала. Если Xбанахово пространство, то в качестве р(х)можно взять и тогда Доказана X. Ханом (1927) и независимо С. Банахом (1929).

Лит.:[1] Hahn Н., лJ. reine und angew. Math.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое хана - банаха теорема
Значение слова хана - банаха теорема
Что означает хана - банаха теорема
Толкование слова хана - банаха теорема
Определение термина хана - банаха теорема
hana banaha teorema это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):